Nghiên cứu tổng quan về tương tác giữa đường hầm và cọc

  • Cơ quan:

    1 Trường Đại học Mỏ - Địa chất, Hà Nội, Việt Nam
    2 Nhóm nghiên cứu mạnh Xây dựng hầm và không gian ngầm, Trường Đại học Mỏ - Địa chất, Hà Nội, Việt Nam
    3 Trường Đại học Điện lực, Hà Nội, Việt Nam

  • *Tác giả liên hệ:
    This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Nhận bài: 27-07-2025
  • Sửa xong: 21-11-2025
  • Chấp nhận: 11-12-2025
  • Ngày đăng: 31-12-2025
Trang: 1 - 15
Lượt xem: 12
Lượt tải: 1
Yêu thích: , Số lượt: 0
Bạn yêu thích

Tóm tắt:

Tương tác giữa đường hầm và cọc là một chủ đề quan trọng trong nghiên cứu địa kỹ thuật, do ảnh hưởng lớn của việc đào hầm đến trạng thái ứng suất và biến dạng của đất cũng như các công trình trên mặt đất. Đào hầm thường gây lún hoặc đẩy trồi bề mặt đất, đặc biệt khi hầm ở độ sâu nhỏ, ảnh hưởng đến sự ổn định của công trình bề mặt và kết cấu móng cọc của chúng. Nghiên cứu tương tác đường hầm - cọc được thực hiện thông qua các phương pháp giải tích, mô hình số và thực nghiệm. Quy trình hai bước thường được áp dụng trong phương pháp giải tích: xác định chuyển vị đất không có cọc, sau đó phân tích ứng xử của cọc. Phương pháp thực nghiệm bao gồm mô hình vật lý (1g và ly tâm) trong phòng thí nghiệm và mô hình nguyên mẫu. Gần đây, mô hình số được sử dụng rộng rãi vì khả năng mô phỏng toàn diện quá trình đào hầm bằng máy khiên đào và tương tác phức tạp giữa khối đất và kết cấu. Phương pháp này tạo ra sự cân bằng giữa chi phí, độ chính xác và tính linh hoạt, khiến nó trở thành một công cụ mạnh mẽ trong cả nghiên cứu và thiết kế. Bài báo tổng hợp các phương pháp nghiên cứu hiện có, đồng thời nêu ra các hướng nghiên cứu tiềm năng nhằm cải thiện độ chính xác trong phân tích và thiết kế kết cấu móng của các công trình bề mặt chịu ảnh hưởng của đường hầm.

Trích dẫn
Nguyễn Tài Tiến . và Phạm Văn Vĩ, 2025. Nghiên cứu tổng quan về tương tác giữa đường hầm và cọc, Tạp chí Khoa học kỹ thuật Mỏ - Địa chất, số 1, kỳ 67, tr. 1-15.
Tài liệu tham khảo

Abd-Elhamed, A. (2021). Analytical Solution of Laterally Loaded Free-Head Long Piles in Elasto-Plastic Cohesive Soils. Mathematics 2021, 9, 1961. https://doi.org/10.3390/math9161961.

Al-Omari, R. R., Al-Soud, M. S., and Al-Zuhairi, O. I. (2019). Effect of tunnel progress on the settlement of the existing piled foundation. Studia Geotechnica et Mechanica41(2). https://doi.org/10.2478/sgem-2019-0008.

Attewell, P. B., Yeates, J., and Selby, A. R. (1986). Soil Movements Induced by Tunnelling and Their Effects on Pipelines and Structures. Glasgow and New York: Blackie; Chapman and Hall.

Ayasrah, M. M., Fattah, M. Y., and Hamood, M. J. (2023). Investigation on existing tunnel response to piles construction: a numerical study. Civ Eng J9, 202-216. https://doi.org/10.28991/CEJ-SP2023-09-016.

Basile, F. (2014). Effects of tunnelling on pile foundations. Soils and Foundations54(3), 280-295. https://doi.org/10.1016/j.sandf.2014.04.004.

Berthoz, N., Branque, D., Michalski, A., Mohamad, W., Bourgeois, E., Le Kouby, A., ... and Rallu, A. (2023). Impact of tunnelling on piles in Parisian subsoil: Dataset of in-situ measurements in the ground and on three instrumented piles. Data in Brief47, 108971. https://doi.org/10.1016/j.dib.2023.108971.

Broere, W., and Dijkstra, J. (2008). Investigating the influence of tunnel volume loss on piles using photoelastic techniques. In Geotechnical Aspects of Underground Construction in Soft Ground (pp. 637-642). CRC Press.

Chen, L., Poulos, H. G., and Loganathan, N. J. J. O. G. (1999). Pile responses caused by tunneling. Journal of Geotechnical and Geoenvironmental Engineering125(3), 207-215. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:3(207).

Chen, Y., Chen, X., Ouyang, J., Shen, X., Huang, S., Sheng, J., and Zhang, L. (2025). Low carbon effects of super large diameter shield directly cutting piles project: A case study in China. Case Studies in Construction Materials22, e04264. https://doi.org/10.1016/j.cscm.2025.e04264.

Do N., A., Dias, D., and Dang, T. T. (2021). A numerical investigation of the impact of shield machine’s operation parameters on the settlements above twin stacked tunnels-A case study of Ho Chi Minh urban railway Line 1. Vietnam Journal of Earth Sciences43(4), 409-423. doi:10.15625/2615-9783/16442.

Franza, A., Marshall, A. M., Haji, T., Abdelatif, A. O., Carbonari, S., and Morici, M. (2017). A simplified elastic analysis of tunnel-piled structure interaction. Tunnelling and Underground Space Technology61, 104-121. https://doi.org/10.1016/j.tust.2016.09.008.

Gao, G., Zhuang, Y., Wang, K., and Chen, L. (2019). Influence of Benoto bored pile construction on nearby existing tunnel: A case study. Soils and Foundations59(2), 544-555. https://doi.org/10.1016/j.sandf.2018.11.006.

Guo, C., Yue, H., Tao, Y., Liu, G., Kong, F., Lu, D., and Du, X. (2025). Mechanical response of pile group and stratum induced by shallow tunneling based on the model test. Tunnelling and Underground Space Technology159, 106480. https://doi.org/10.1016/j.tust.2025.106480.

He, S., Lai, J., Li, Y., Wang, K., Wang, L., and Zhang, W. (2022). Pile group response induced by adjacent shield tunnelling in clay: Scale model test and numerical simulation. Tunnelling and Underground Space Technology120, 104039. https://doi.org/10.1016/j.tust.2021.104039.

Huang, K., Sun, Y., He, J., Huang, X., Jiang, M., and Li, Y. (2021). Comparative study on grouting protection schemes for shield tunneling to adjacent viaduct piles. Advances in Materials Science and Engineering2021(1), 5546970. https://doi.org/10.1155/2021/5546970.

Huang, K., Sun, Y., Huang, X., Li, Y., Jiang, M., and Liu, R. (2021). Effects of different construction sequences on ground surface settlement and displacement of single long pile due to twin paralleled shield tunneling. Advances in Civil Engineering2021(1), 5559233. https://doi.org/10.1155/2021/5559233.

Huang, K., Sun, Y., Kuang, X., Huang, X., Liu, R., and Wu, Q. (2022). Study on the restraint effect of isolation pile on surface settlement trough induced by shield tunnelling. Applied Sciences12(10), 4845. https://doi.org/10.3390/app12104845.

Idinger, G., Aklik, P., Wu, W., and Borja, R. I. (2011). Centrifuge model test on the face stability of shallow tunnel. Acta Geotechnica6(2), 105-117. https://doi.org/10.1007/s11440-011-0139-2.

Jacobsz, S. W., Standing, J. R., Mair, R. J., Hagiwara, T., and Sugiyama, T. (2004). Centrifuge modelling of tunnelling near driven piles. Soils and foundations44(1), 49-56. https://doi.org/10.3208/sandf.44.49.

Jongpradist, P., Kaewsri, T., Sawatparnich, A., Suwansawat, S., Youwai, S., Kongkitkul, W., and Sunitsakul, J. (2013). Development of tunneling influence zones for adjacent pile foundations by numerical analyses. Tunnelling and underground space technology34, 96-109. https://doi.org/10.1016/j.tust.2012.11.005.

Khoo, C., Mohamad, H., Beddelee, A. A. A. M., Thansirichaisree, P., Ghazali, M. F., and Nasir, M. Y. M. (2025). Effects of advancing tunnel on a loaded pile: Numerical analysis and field measurements. Journal of Rock Mechanics and Geotechnical Engineering. https://doi.org/10.1016/j.jrmge.2024.12.028.

Kong, S. M., Oh, D. W., Lee, S. W., Kim, C. Y., and Lee, Y. J. (2021). Effects of pile installation on existing tunnels using model test and numerical analysis with medium density sand. Applied Sciences11(15), 6904. https://doi.org/10.3390/app11156904.

Lee, C. J. (2012). Numerical analysis of the interface shear transfer mechanism of a single pile to tunnelling in weathered residual soil. Computers and Geotechnics42, 193-203. https://doi.org/10.1016/j.compgeo.2012.01.009.

Lee, Y. J., and Bassett, R. H. (2007). Influence zones for 2D pile–soil-tunnelling interaction based on model test and numerical analysis. Tunnelling and underground space technology22(3), 325-342. https://doi.org/10.1016/j.tust.2006.07.001.

Lê, B. Q. (2019). Ảnh hưởng thi công công trình ngầm đô thị đối với móng sâu công trình lân cận trong môi trường đất yếu ở Thành phố Hồ Chí Minh. Vĩnh Long: Trường Đại học Xây dựng Miền Tây.

Li, H., Tong, L., and Liu, S. (2021, August). Multistage-based evaluation of tunnelling effects on the skin friction of adjacent building piles in layered media. In Structures (Vol. 32, pp. 96-105). Elsevier. https://doi.org/10.1016/j.istruc.2021.03.023.

Li, P., Lu, Y., Lai, J., Liu, H., and Wang, K. (2020). A Comparative Study of Protective Schemes for Shield Tunnelling Adjacent to Pile Groups. Advances in Civil Engineering, 16, 1-16. https://doi.org/10.1155/2020/6964314.

Li, T., Yang, M., and Chen, X. (2023). A Simplified Analytical Method for the Deformation of Pile Foundations Induced by Adjacent Excavation in Soft Clay. Buildings, 13. https://doi.org/10.3390/buildings13081919.

Li, X., Yuan, D., Jiang, X., and Wang, F. (2021). Damages and wear of tungsten carbide-tipped rippers of tunneling machines used to cutting large diameter reinforced concrete piles. Engineering Failure Analysis127, 105533. https://doi.org/10.1016/j.engfailanal.2021.105533.

Li, Z., Chen, Z., Wang, L., Zeng, Z., and Gu, D. (2021). Numerical simulation and analysis of the pile underpinning technology used in shield tunnel crossings on bridge pile foundations. Underground Space6(4), 396-408. https://doi.org/10.1016/j.undsp.2020.05.006.

Lim, C. B., Jusoh, S. N., Lim, C. X., Hasbollah, D. Z. A., and Sohaei, H. (2023). Tunnel–pile interaction sequence: Parametric studies. Physics and Chemistry of the Earth, Parts A/B/C129, 103312. https://doi.org/10.1016/j.pce.2022.103312.

Liu, B., Li, T., Han, Y., Li, D., He, L., Fu, C., and Zhang, G. (2022). DEM-continuum mechanics coupling simulation of cutting reinforced concrete pile by shield machine. Computers and Geotechnics152, 105036.https://doi.org/10.1016/j.compgeo.2022.105036.

Liu, C., Zhang, Z., and Regueiro, R. A. (2014). Pile and pile group response to tunnelling using a large diameter slurry shield–Case study in Shanghai. Computers and Geotechnics59, 21-43. https://doi.org/10.1016/j.compgeo.2014.03.006.

Liu, Z. X., Ye, X. W., Song, K., Lu, C. R., Song, Y. J., Li, X. J., and Zhao, L. A. (2025). Monitoring-based analysis of the responses of upper structure and tunnel lining during shield tunneling with pile cutting. Tunnelling and Underground Space Technology158, 106427. https://doi.org/10.1016/j.tust.2025.106427.

Lu, H., Shi, J., Ng, C. W., and Lv, Y. (2020). Three-dimensional centrifuge modeling of the influence of side-by-side twin tunneling on a piled raft. Tunnelling and Underground Space Technology103, 103486. https://doi.org/10.1016/j.tust.2020.103486.

Magade, S. B., and Ingle, R. K. (2019). Influence of Clear Edge Distance and Spacing of Piles on Failure of Pile Cap. Iranian Journal of Science and Technology - Transactions of Civil Engineering. https://doi.org/10.1007/s40996-019-00285-9.

Mangi, N., Bangwar, D. K., Karira, H., Kalhoro, S., and Siddiqui, G. R. (2020). Parametric study of pile response to side-by-side twin tunneling in stiff clay. Engineering, Technology and Applied Science Research10(2), 5361-5366. https://doi.org/10.48084/etasr.3290.

Marshall, A. M., and Mair, R. J. (2011). Tunneling beneath driven or jacked end-bearing piles in sand. Canadian Geotechnical Journal48(12), 1757-1771. https://doi.org/10.1139/t11-067.

Meguid, M. A., Saada, O., Nunes, M. A., and Mattar, J. (2008). Physical modeling of tunnels in soft ground: a review. Tunnelling and Underground Space Technology23(2), 185-198. https://doi.org/10.1016/j.tust.2007.02.003.

Mohamad, W., Bourgeois, E., Le Kouby, A., Szymkiewicz, F., Michalski, A., Branque, D., ... and Kreziak, C. (2022). Full scale study of pile response to EPBS tunnelling on a Grand Paris Express site. Tunnelling and Underground Space Technology124, 104492. https://doi.org/10.1016/j.tust.2022.104492.

Momeni, R., Rostami, V., and Khazaei, J. (2017). Study of physical modelling for piles. Open Journal of Geology7(8), 1160-1175. https://doi.org/10.4236/ojg.2017.78077.

Ng, C. W. W., Lu, H., and Peng, S. Y. (2013). Three-dimensional centrifuge modelling of the effects of twin tunnelling on an existing pile. Tunnelling and Underground Space Technology35, 189-199. https://doi.org/10.1016/j.tust.2012.07.008.

Ng, C. W. W., Soomro, M. A., and Hong, Y. (2014). Three-dimensional centrifuge modelling of pile group responses to side-by-side twin tunnelling. Tunnelling and Underground Space Technology43, 350-361. https://doi.org/10.1016/j.tust.2014.05.002.

Nguyễn, A. T., and Nguyễn, T. D. (2012). Phân tích ảnh hưởng lún của việc xây dựng đường hầm Metro đến các công trình lân cận khu vực thành phố Hồ Chí Minh. Tạp chí GTVT.

Pang, C., Yong, K., Ch, Y., and Wang, J. (2006). The response of pile foundations subjected to shield tunnelling. Trong International Society for Soil Mechanics and Geotechnical Engineering (trang 737-743). London, UK: Taylor and Francis Group plc.

Phutthananon, C., Lertkultanon, S., Jongpradist, P., Duangsano, O., Likitlersuang, S., and Jamsawang, P. (2023). Numerical investigation on the responses of existing single piles due to adjacent twin tunneling considering the lagging distance. Underground Space11, 171-188. https://doi.org/10.1016/j.undsp.2022.12.005.

Peck, B. B. (1969). Deep excavation and tunnelling in soft ground, State of the art volume. In 7th ICSMFE (Vol. 4, pp. 225-290).

Poulos, H. G. (1989). Pile behaviour—theory and application. Geotechnique39(3), 365-415. https://doi.org/10.1680/geot.1989.39.3.365.

Poulos, H. G., and Davis, E. H. (1974). Elastic Solutions for Soil and Rock Mechanics. John Wiley NY.

Poulos, H. G., and Davis, E. H. (1980). Pile Foundation Analysis and Design. John Wiley and Sons Inc.

Loganathan, N., Poulos, H. G., and Stewart, D. P. (2000). Centrifuge model testing of tunnelling-induced ground and pile deformations. Geotechnique50(3), 283-294. https://doi.org/10.1680/geot.2000.50.3.283.

Lueprasert, P., Jongpradist, P., Jongpradist, P., and Suwansawat, S. (2017). Numerical investigation of tunnel deformation due to adjacent loaded pile and pile-soil-tunnel interaction. Tunnelling and Underground Space Technology70, 166-181. https://doi.org/10.1016/j.tust.2017.08.006.

Randolph, M. F., and Wroth, C. P. (1979). An analysis of the vertical deformation of pile groups. Geotechnique29(4), 423-439. https://doi.org/10.1680/geot.1979.29.4.423.

Randolph, M. F., and Wroth, C. P. (1978). Analysis of deformation of vertically loaded piles. Journal of the geotechnical engineering division104(12), 1465-1488. https://doi.org/10.1061/AJGEB6.0000729.

Rehman, M., Abbas, S. M., and Usmani, A. (2024). Analysis of tunnel-pile interaction and predictive modelling of pile foundation response to tunnel excavation at various horizontal positions using PLAXIS. International Journal of Computational Materials Science and Surface Engineering12(1), 62-80. https://doi.org/10.1504/IJCMSSE.2024.139018.

Rong, X., Gao, L., Han, A., Wu, J., Wu, X., and Jiang, G. (2024). Analysis of ground volume loss for EPB shield tunneling in thick silty clay layer. Alexandria Engineering Journal96, 295-302. https://doi.org/https://doi.org/10.1016/j.aej.2024.03.083.

Selemetas, D. (2005). The response of full-scale piles and piled structures to tunnelling. Cambridge University.

Sohaei, H., Namazi, E., Hajihassani, M., and Marto, A. (2020). A review on tunnel–pile interaction applied by physical modeling. Geotechnical and Geological Engineering38(4), 3341-3362. https://doi.org/10.1007/s10706-020-01240-6.

Song, G., Marshall, A. M., and Heron, C. M. (2022). The use of protective structures to reduce tunnelling induced damage to buildings. In Geotechnical Aspects of Underground Construction in Soft Ground. 2nd Edition (pp. 673-680). CRC Press.

Song, G. (2019). The use of protective structures to reduce tunnelling induced damage to buildings. Nottingham: Doctoral thesis, University of Nottingham.

Soomro, M. A. (2025). Influence of twin stacked tunnels on the performance of laterally loaded pile group. Canadian Geotechnical Journal62, 1-23. https://doi.org/10.1139/cgj-2024-0199.

Soomro, M. A., Keerio, M. A., and Bangwar, D. K. (2017). 3D centrifuge modeling of the effect of twin tunneling to an existing pile group. Engineering, Technology and Applied Science Research7(5), 2030-2040. https://doi.org/10.48084/etasr.1393.

Soomro, M. A., Kumar, M., Xiong, H., Mangnejo, D. A., and Mangi, N. (2020). Investigation of effects of different construction sequences on settlement and load transfer mechanism of single pile due to twin stacked tunnelling. Tunnelling and Underground Space Technology96, 103171. https://doi.org/10.1016/j.tust.2019.103171.

Soomro, M. A., Mangi, N., Cui, Z. D., Liu, K., and Mangnejo, D. A. (2024). Evaluation of response mechanisms in an elevated pile group subjected to lateral loading caused by twin-tunnelling. Computers and Geotechnics171, 106334. https://doi.org/10.1016/j.compgeo.2024.106334.

Stacul, S., and Squeglia, N. (2018). KIN SP: A boundary element method based code for single pile kinematic bending in layered soil. Journal of Rock Mechanics and Geotechnical Engineering10(1), 176-187. https://doi.org/10.1016/j.jrmge.2017.11.004.

Su, J., Pan, Y., Niu, X., and Zhang, C. (2025). Effect of shield tunneling on adjacent pile foundations in water-rich strata. Transportation Geotechnics52, 101557. https://doi.org/10.1016/j.trgeo.2025.101557

Surjadinata, J., Hull, T. S., Carter, J. P., and Poulos, H. G. (2006). Combined finite-and boundary-element analysis of the effects of tunneling on single piles. International Journal of Geomechanics6(5), 374-377. https://doi.org/10.1061/(ASCE)1532-3641(2006)6:5(374).

Taylor, R. (1994). Geotechnical Centrifuge Technology. London: CRC Press. https://doi.org/10.1201/9781482269321.

Tian, Z., Zhang, Z., Zhang, G., Shan, X., and Liu, W. (2025). Impact analysis of tunnel crossing pile foundation at different angles. Scientific

Reports15(1), 4770. https://doi.org/10.1038/s41598-024-83863-w.

Vesić, A. B. (1961). Bending of beams resting on isotropic elastic solid. Journal of the Engineering Mechanics Division87(2), 35-53. https://doi.org/10.1061/JMCEA3.000021.

Viswanadham, B. V. S. (2016). Centrifuge-based Physical Modeling of Geotechnical Structures. A Primer on Numerical and Physical Modelling in Geotechnical Engineering, 1.

Wang, G., Qiao, S., Li, G., and Singh, J. (2023). Direct shield cutting of large-diameter reinforced concrete group piles: Case study on Shenyang Metro construction. Case Studies in Construction Materials18, e01864. https://doi.org/10.1016/j.cscm.2023.e01864.

Wang, Y., Ma, Y., Wang, R., Ding, B., and Yu, S. (2024). Vibration response of piles at different distances induced by shield tunneling in hard rock strata. Scientific Reports14(1), 21723. https://doi.org/10.1038/s41598-024-72987-8.

Wang, Y., Wang, X., Xiong, Y., Yang, Z., and Zhang, J. (2022). Full‐Scale Laboratory Test of Cutting Large‐Diameter Piles Directly by Shield Cutterhead. Advances in Civil Engineering2022(1), 8780927. https://doi.org/10.1155/2022/8780927.

Wu, T., Gao, Y., and Zhou, Y. (2022). Application of a novel grouting material for prereinforcement of shield tunnelling adjacent to existing piles in a soft soil area. Tunnelling and Underground Space Technology128, 104646. https://doi.org/10.1016/j.tust.2022.104646.

Yang, W., Zhang, D., and Wang, A. (2022). Field measurement analysis of the influence of simultaneous construction of river channel and bridge on existing double shield tunnels. Underground Space7(5), 812-832. https://doi.org/10.1016/j.undsp.2021.12.008.

Ye, X. W., Liu, Z. X., Chen, Y. B., Lu, C. R., Song, Y. J., Li, X. J., and Zhao, L. A. (2024). Deformation of existing underpasses due to pile cutting and shield tunneling: Observations from field monitoring and explanations by analytical model. Case Studies in Construction Materials21, e03836. https://doi.org/10.1016/j.cscm.2024.e03836.

Zhang, C., Zhao, Y., Zhang, Z., and Zhu, B. (2021). Case study of underground shield tunnels in interchange piles foundation underpinning construction. Applied Sciences11(4), 1611. https://doi.org/10.3390/app11041611.

Zhang, Z., Huang, M., Xu, C., Jiang, Y., and Wang, W. (2018). Simplified solution for tunnel-soil-pile interaction in Pasternak’s foundation model. Tunnelling and Underground Space Technology78, 146-158. https://doi.org/10.1016/j.tust.2018.04.025.

Zhang, Z., Zhang, C., Jiang, K., Wang, Z., Jiang, Y., Zhao, Q., and Lu, M. (2019). Analytical prediction for tunnel-soil-pile interaction mechanics based on Kerr foundation model. KSCE Journal of Civil Engineering23(6), 2756-2771. https://doi.org/10.1007/s12205-019-0791-x.

Zhao, Z., Zhang, Y., and Dai, F. (2024). Study on deformation of tunnel pile foundation based on discrete element method and finite difference method. Plos one19(7), e0307405. https://doi.org/10.1371/journal.pone.0307405.

Zhou, J., Han, K., and Chen, W. (2024). Study on Influence Mechanism of Tunnel Construction on Adjacent Pile Foundation and Resilience Assessment. Buildings (2075-5309)14(9). https://doi.org/10.3390/buildings14092818.

Zhu, Y., Zeng, B., Ye, S., He, L., Zheng, Y., and Ma, R. (2023). Physical model tests and discrete-element simulation of pile and soil displacement response induced by DOT shield tunneling based on transparent soil technology. International Journal of Geomechanics23(8), 04023124. https://doi.org/10.1061/IJGNAI.GMENG-796.

Các bài báo khác