Assessment of the potential use of the Radar Vegetation Index (RVI) using Sentinel-1 imagery for monitoring vegetation cover: A case study in Thanh Hoa province, Vietnam

  • Affiliations:

    Institute of Construction Technology, Le Quy Don Technical University, Hanoi, Vietnam,

  • *Corresponding:
    This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Received: 23rd-July-2025
  • Revised: 10th-Nov-2025
  • Accepted: 20th-Dec-2025
  • Online: 31st-Dec-2025
Pages: 70 - 80
Views: 7
Downloads: 1
Rating: , Total rating: 0
Yours rating

Abstract:

Changes in the surface vegetation cover occur continuously over time as a result of the influence of anthropogenic activities, natural hazards, and the dynamics of vegetation development. The Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index (EVI) are two examples of optical remote sensing indices that are routinely used to monitor vegetation cover at the present time. The optical indices, on the other hand, are frequently constrained by the weather conditions, which results in the collecting of data being interrupted. In order to overcome this constraint, the authors propose the utilization of the Radar Vegetation Index (RVI), which is produced from Synthetic Aperture Radar (SAR) data obtained from Sentinel-1A, for the purpose of monitoring landscape vegetation cover. The research findings show that RVI values follow a pattern of variation that corresponds to the stages of paddy rice growth. Additionally, the Pearson correlation coefficient (r) and p-value were employed to examine the correlation between the RVI (provided by Sentinel-1) and the NDVI (provided by Sentinel-2) for various vegetation categories. Perennial crops, industrial crops, and paddy rice demonstrated correlation coefficients of 0.675, 0.700, and 0.563, respectively, with p-values at or below 0.05. In particular for industrial and perennial crops, our results show that RVI often varies in correlation with NDVI. It is confirmed that the RVI is sensitive to the dynamics of vegetation, which is comparable to that of standard optical indices such as the NDVI. This study contributes to the enhancement of the usefulness of RVI in vegetation cover monitoring.

How to Cite
Le, H.Minh, Le, H.Hong Vu and Nguyen, D.Van 2025. Assessment of the potential use of the Radar Vegetation Index (RVI) using Sentinel-1 imagery for monitoring vegetation cover: A case study in Thanh Hoa province, Vietnam (in Vietnamese). Journal of Mining and Earth Sciences. 1, 67 (Dec, 2025), 70-80. DOI:https://doi.org/10.46326/JMES.2026.67(1).06.
References

Chang, C. Y., Lin, Y. C., Chen, C. F., Lin, M. L. (2024). Exploring agricultural drought monitoring using Sentinel-1 SAR data and Radar Vegetation Index. Remote Sensing 16(3), 443.

Charbonneau, F., Trudel, M., and Fernandes, R. (2005). Use of Dual Polarization and MultiIncidence SAR for soil permeability mapping. In: Advanced Synthetic Aperture Radar (ASAR) 2005, St-Hubert, Canada.

Chi cục Thống kê tỉnh Thanh Hóa (2022), Tình hình kinh tế-xã hội năm 2022 của Tỉnh Thanh Hóa.

Gonenc, A., Ozerdem, M. S., Acar, E. (2019). Comparison of NDVI and RVI vegetation indices using satellite images. In 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), IEEE, 1-4.

Google Earth Engine - GEE (2025), https:// developers.google.com/earth-engine/ datasets/catalog.

Hu, X., Li, L., Huang, J., Zeng, Y., Zhang, S., Su, Y., ... and Hong, Z. (2024). Radar vegetation indices for monitoring surface vegetation: Developments, challenges, and trends. Science of The Total Environment945, 173974.

Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote sensing of environment, 83(1-2), 195-213.Kim, Y., Kim, Y., Van Zyl, J. J. (2014). A time-series approach to estimate soil moisture using dual-polarization radar data. IEEE Transactions on Geoscience and Remote Sensing 52(7), 3856-3869.

Kim, Y., Van Zyl, J. J. (2004). Vegetation effects on soil moisture estimation. 2004 IEEE International Geoscience and Remote Sensing Symposium. September 20-24, Anchorage, AK, USA, 2, 800-802.

Kim, Y., Van Zyl, J. j. (2009). A time-series approach to estimate soil moisture using polarimetric radar data. IEEE Transactions on Geoscience and Remote Sensing, 47(8), 2519-2527.

Nguyễn, Q.K. (2023). Ứng dụng hệ thống viễn thám, GIS theo dõi sự biến động của một số thành phần môi trường do hoạt động khai thác khoáng sản bauxite. Tạp chí Khí tượng thủy văn, 751, 1-18.

Phung, H. P., Lam-Dao, N., Nguyen-Huy, T., Le-Toan, T., Apan, A. A. (2020). Monitoring rice growth status in the Mekong Delta, Vietnam using multitemporal Sentinel-1 data. Journal of Applied Remote Sensing, 14(1), 014518-014518.

Rouse Jr, J. W., Haas, R. H., Schell, J. A., Deering, D. W. (1973). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. The Third Earth Resources Technology Satellite-1 Symposium. December 10-14, Washington, DC, USA, 1, 309-317.

Spracklen, B., Spracklen, D. V. (2021). Synergistic use of Sentinel-1 and Sentinel-2 to map natural forest and acacia plantation and stand ages in North-Central Vietnam. Remote Sensing, 13(2), 185.

Thomas, J., Ahmad, A., Bhat, M. S. (2025). Assessing the potential of Sentinel-1 SAR data for crop monitoring using polarimetric indices. International Journal of Remote Sensing 46(2), 123-142.

Ủy bannhân dân huyện Quảng Xương (2022),Hướng dẫn lịch gieo trồng vụ xuân 2022. People's committee of Quang Xuong district (2022), Guidelines for spring crop planting schedule 2022 (in Vietnamese).

Ủy ban thường vụ quốc hội - UBTVQH (2025). Nghị quyết về việc sắp xếp các đơn vị hành chính cấp xã của tỉnh Thanh Hóa năm 2025. Số 1686/NQ-UBTVQH15, ngày 16/06/2025.

Van Pham, M., Pham, T. M., Du, Q. V. V., Bui, Q. T., Van Tran, A., Pham, H. M., Nguyen, T. N. (2019). Integrating Sentinel-1A SAR data and GIS to estimate aboveground biomass and carbon accumulation for tropical forest types in Thuan Chau district, Vietnam. Remote Sensing Applications: Society and Environment, 14, 148-157.

Wu, X., Zhang, L., Chen, Y., Li, J. (2025). Integrated analysis of Sentinel-1 SAR and optical data for vegetation dynamics monitoring. ISPRS Journal of Photogrammetry and Remote Sensing, 198, 45-60.

Other articles