Correlation between P-wave modulus (M) and Uniaxial compressive strength (UCS) derived from hydraulic flow units (HFU)

  • Affiliations:

    1 Petrovietnam Exploration and Production Corporation, Hanoi, Vietnam
    2 Ha Noi University of Mining and Geology, Hanoi, Vietnam

  • *Corresponding:
    This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Received: 30th-Aug-2025
  • Revised: 28th-Nov-2025
  • Accepted: 16th-Dec-2025
  • Online: 31st-Dec-2025
Pages: 92 - 105
Views: 7
Downloads: 1
Rating: , Total rating: 0
Yours rating

Abstract:

Uniaxial compressive strength (UCS) is one of the most important geomechanical parameters for evaluating rock strength along the wellbore. It is essential for ensuring drilling safety and optimizing drilling operations, particularly in determining the appropriate mud weight window to maintain well stability and improve the rate of penetration. Additionally, the UCS parameter plays a significant role in predicting sand production. Typically, UCS is determined through core sample tests in the laboratory, but this method is costly and time-consuming and provides either scattered data nor continuous log profile. Therefore, many studies around the world have proposed correlation between cored UCS and well log. However, these models often exhibit significant errors when applied to field X, Block Y in the Northern area of Cuu Long basin. In this paper, we propose a correlation between P-wave modulus (M) and Uniaxial compressive strength (UCS) derived from hydraulic flow units. Consequently, the correlation coefficient between cored UCS and log-derived UCS values is very high, with an overall value of 0.82 for all wells. In particular, the mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE) are as follows: for well A-1X — MAE: 426.3 psi, MAPE: 10.4%, RMSE: 582.5 psi; for well A-2X — MAE: 843.17 psi, MAPE: 16%, RMSE: 1115.5 psi; for well A-3X — MAE: 321.9 psi, MAPE: 7%, RMSE: 385.6 psi; and for well A-4X — MAE: 286.46 psi, MAPE: 10%, RMSE: 438.76 psi. The blind-test well B-1X shows acceptable errors, with MAE: 335.5 psi, MAPE: 14%, and RMSE: 383.37 psi. This model enhances the efficiency and safety of drilling and production operations in Field X, Block Y, located in the northeastern part of the Cuu Long Basin.

How to Cite
Nguyen, H.Van, Phan, H.Thien and Nguyen, V.The 2025. Correlation between P-wave modulus (M) and Uniaxial compressive strength (UCS) derived from hydraulic flow units (HFU) (in Vietnamese). Journal of Mining and Earth Sciences. 1, 67 (Dec, 2025), 92-105. DOI:https://doi.org/10.46326/JMES.2026.67(1).08.
References

Abbaszadeh, M., Fujii, H., and Fujimoto, F. (1996). Permeability prediction by hydraulic flow units—theory and applications. SPE Formation Evaluation11(04), 263-271.  https://doi.org/10.2118/30158-PA

Amaefule, J. O., Altunbay, M., Tiab, D., Kersey, D. G., and Keelan, D. K. (1993, October). Enhanced reservoir description: using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells. In SPE Annual Technical Conference and Exhibition? (pp. SPE-26436). SPE https://doi.org/10.2118/26436-MS

Asadi, A. (2017). Application of artificial neural networks in prediction of uniaxial compressive strength of rocks using well logs and drilling data. Procedia Engineering191, 279-286. https://doi.org/10.1016/j.proeng.2017.05.182

Bieniawski, Z. T. (1974). Estimating the strength of rock materials. Journal of the Southern African Institute of Mining and Metallurgy74(8), 312-320. https://doi.org/10.1016/0148-9062(74)91782-3

Chang, C., Zoback, M. D., and Khaksar, A. (2006). Empirical relations between rock strength and physical properties in sedimentary rocks. Journal of Petroleum Science and Engineering51(3-4), 223-237. https://doi.org/10.1016/j.petrol.2006.01.003

Desouky, S. E. D. M. (2005). Predicting permeability in un-cored intervals/wells using hydraulic flow unit approach. Journal of Canadian Petroleum Technology44(07). https://doi.org/DOI:10.2118/05-07-04

Ha, M. Q., Le, A. N., and Jarzyna, J. (2021). Hydraulic flow unit classification from core data: Case study of the Z gas reservoir, Poland. Journal of Mining and Earth Sciences62(3), 29-36. https://doi.org/10.46326/JMES.2021.62(3).04

Hassanvand, M., Moradi, S., Fattahi, M., Zargar, G., and Kamari, M. (2018). Estimation of rock uniaxial compressive strength for an Iranian carbonate oil reservoir: Modeling vs. artificial neural network application. Petroleum Research3(4), 336-345. https://doi.org/10.1016/j.ptlrs.2018.08.004

Lade, P. V. (1993). Rock strength criteria: the theories and the evidence (Vol. 1, pp. 255-284). Comprehensive Rock Engineering-Principles, Practice and Projects. Pergamon Press.

Lê, V.C., Hoàng, N.Đ., Trần, V.T. (2005). Chương 5 Các bể trầm tích Kainozoi ở Việt nam. In Địa chất và tài nguyên Dầu khí của Việt nam (pp. 63–105).

McNally, G. H. (1987). Estimation of coal measures rock strength using sonic and neutron logs. Geoexploration24(4-5), 381-395. https://doi.org/10.1016/0016-7142(87)90008-1

Nabaei, M., and Shahbazi, K. (2012). A new approach for predrilling the unconfined rock compressive strength prediction. Petroleum science and technology30(4), 350-359. https://doi.org/10.1080/10916461003752546

Nguyễn,X.T., Lê,H. A (2012). Mô hình địa chất 3D trên cơ sở xác định các đợn vị dòng chảy thủy lực cho hệ tầng sản phẩm tuổi Miocen Hạ, mỏ Bạch Hổ. Tạp Chí KHKT Mỏ -Địa Chất, 37, 6–12.

Pells, P. J. (1993). Uniaxial strength testing. In Rock testing and site characterization (pp. 67-85). Pergamon. https://doi.org/10.1016/B978-0-08-042066-0.50010-0

Horsrud, P. (2001). Estimating mechanical properties of shale from empirical correlations. SPE Drilling and Completion16(02), 68-73. https://doi.org/10.2118/56017-PA

Rabbani, E., Sharif, F., Koolivand Salooki, M., and Moradzadeh, A. (2012). Application of neural network technique for prediction of uniaxial compressive strength using reservoir formation properties. International journal of rock mechanics and mining sciences (1997)56, 100-111. https://doi.org/10.1016/j.ijrmms.2012.07.033

Schmidt, W. J., Hoang, B. H., Handschy, J. W., Hai, V. T., Cuong, T. X., and Tung, N. T. (2019). Tectonic evolution and regional setting of the Cuu Long Basin, Vietnam. Tectonophysics757, 36-57. https://doi.org/10.1016/j.tecto.2019.03.001

Shen, X., Chen, M., Lu, W., and Li, L. (2017). Using P wave modulus to estimate the mechanical parameters of rock mass. Bulletin of Engineering Geology and the Environment76(4), 1461-1470. https://doi.org/DOI:10.1007/s10064-016-0932-0

Shi, X., Meng, Y., Li, G., Li, J., Tao, Z., and Wei, S. (2015). Confined compressive strength model of rock for drilling optimization. Petroleum, 1(1),40–45. https://doi.org/10.1016/j.petlm.2015.03.002

Tiab, Donaldson. (2015). Petrophysics: Theory and Practice of measuring reservoir rock and fluid transport properties. Gulf professional sspublishing.

Trần, L.Đ.,  Phùng, Đ.H (2005). Bể trầm tích Cửu long và tài nguyên dầu khí. In Địa chất và Tài nguyên dầu khí Việt nam (pp. 269–317). Nhà xuất bản Khoa học và Kỹ thuật.

Tsiambaos, G., and Sabatakakis, N. (2004). Considerations on strength of intact sedimentary rocks. Engineering Geology72(3-4), 261-273. http://dx.doi.org/10.1016/j.enggeo.2003.10.001

Other articles