Optimizing machine learning models for enhanced forest fire susceptibility mapping in Gia Lai province

- Tác giả: Hung Van Le 1*, Duc Anh Hoang 2, Giang Truong Tran 2
Cơ quan:
1 Thuyloi University, Hanoi, Vietnam
2 Hanoi University of Mining and Geology, Hanoi Vietnam
- *Tác giả liên hệ:This email address is being protected from spambots. You need JavaScript enabled to view it.
- Từ khóa: Forest fire, Gia Lai, Machine learning, Modeling, Optimization.
- Nhận bài: 24-10-2024
- Sửa xong: 14-01-2025
- Chấp nhận: 29-01-2025
- Ngày đăng: 01-04-2025
- Lĩnh vực: Công nghệ Thông tin
Tóm tắt:
Forest fires pose significant risks to ecosystems, biodiversity, human health, and the economy, with escalating global impacts. In Vietnam, particularly during the dry season, the rising threat of forest fires necessitates accurate predictive models for effective prevention and management. This study advances forest fire susceptibility mapping in Gia Lai province by leveraging optimized machine learning models. We evaluated five models - Deep Neural Networks (DNN), Random Forest (RF), Gradient Boosting (GB), Logistic Regression (LR), and Support Vector Machines (SVM) - using a dataset of 2,827 fire incidents (2007÷2021), an equal number of non-fire points, and 12 influencing factors: slope, aspect, elevation, curvature, land use, NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference Water Index), NDMI (Normalized Difference Moisture Index), temperature, wind speed, relative humidity, and rainfall. Among the models, RF outperformed others and was further optimized using Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Bayesian Optimization (BO). The Acc-GA-Opt-RF model (Accuracy-Optimized Random Forest using GA) achieved the best performance, with 84.4% accuracy, an AUC (Area Under the ROC Curve) of 0.9083, PPV (Positive Predictive Value) of 88.2%, NPV (Negative Predictive Value) of 81.2%, sensitivity of 79.3%, specificity of 89.4%, F-score of 0.8354, and Kappa of 0.687, demonstrating significant improvements over the unoptimized RF model. Factor importance analysis, employing Average Impurity Decrease (AID) and Permutation Feature Importance (PFI), identified NDVI and NDWI as key predictors, highlighting the critical role of vegetation indices in forest fire susceptibility. The optimized RF model was utilized to generate a forest fire susceptibility map categorizing the region into six risk levels, providing actionable insights for targeted fire prevention and management in Gia Lai province.

Abid, F. (2021). A Survey of Machine Learning Algorithms Based Forest Fires Prediction and Detection Systems. Fire Technology, 57(2), 559-590.
Alexandridis, A., Vakalis, D., Siettos, C. I., and Bafas, G. V. (2008). A cellular automata model for forest fire spread prediction: The case of the wildfire that swept through Spetses Island in 1990. Applied Mathematics and Computation, 204(1), 191-201.
Al-Shabeeb, A. R., Hamdan, I., Meimandi Parizi, S., Al-Fugara, A. k., Odat, S. a., Elkhrachy, I., Hu, T., and Sammen, S. S. (2023). A Comparative Study of Genetic Algorithm-Based Ensemble Models and Knowledge-Based Models for Wildfire Susceptibility Mapping. Sustainability, 15(21).
Anandaram, H., M, N., Cosio Borda, R. F., K, K., and S, Y. (2023). Forest fire management using machine learning techniques. Measurement: Sensors, 25, 100659.
Bar, S., Parida, B. R., Pandey, A. C., Shankar, B. U., Kumar, P., Panda, S. K., and Behera, M. D. (2023). Modeling and prediction of fire occurrences along an elevational gradient in Western Himalayas. Applied Geography, 151, 102867.
Bennie, J., Huntley, B., Wiltshire, A., Hill, M. O., and Baxter, R. (2008). Slope, aspect and climate: Spatially explicit and implicit models of topographic microclimate in chalk grassland. Ecological Modelling, 216(1), 47-59.
Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32.
Bui, D. T., Bui, Q.-T., Nguyen, Q.-P., Pradhan, B., Nampak, H., and Trinh, P. T. (2017). A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agricultural and Forest Meteorology, 233, 32-44.
Bui, T. D., Le, H. V., and Hoang, N.-D. (2018). GIS-based spatial prediction of tropical forest fire danger using a new hybrid machine learning method. Ecological Informatics, 48, 104-116.
Carlson, T. N., and Ripley, D. A. (1997). On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62(3), 241-252.
Chang, Y., Zhu, Z., Bu, R., Chen, H., Feng, Y., Li, Y., Hu, Y., and Wang, Z. (2013). Predicting fire occurrence patterns with logistic regression in Heilongjiang Province, China. Landscape Ecology, 28(10), 1989-2004.
Chen, B. X., Sun, Y. F., Zhang, H. B., Han, Z. H., Wang, J. S., Li, Y. K., and Yang, X. L. (2018). Temperature change along elevation and its effect on the alpine timberline tree growth in the southeast of the Tibetan Plateau. Advances in Climate Change Research, 9(3), 185-191.
Dupuy, J. L., and Maréchal, J. (2011). Slope effect on laboratory fire spread: contribution of radiation and convection to fuel bed preheating. International Journal of Wildland Fire, 20(2), 289-307.
Flannigan, M. D., Krawchuk, M. A., de Groot, W. J., Wotton, B. M., and Gowman, L. M. (2009). Implications of changing climate for global wildland fire. International Journal of Wildland Fire, 18(5), 483-507.
Gao, C., Lin, H., and Hu, H. (2023). Forest-Fire-Risk Prediction Based on Random Forest and Backpropagation Neural Network of Heihe Area in Heilongjiang Province, China. Forests, 14(2).
General Statistics Office. (2023). 2022 Statistical Yearbook of Viet Nam. Statistical Publishing House.
Gillett, N. P., Weaver, A. J., Zwiers, F. W., and Flannigan, M. D. (2004). Detecting the effect of climate change on Canadian forest fires. Geophysical Research Letters, 31(18).
Hilton, J. E., Miller, C., Sharples, J. J., and Sullivan, A. L. (2016). Curvature effects in the dynamic propagation of wildfires. International Journal of Wildland Fire, 25(12), 1238-1251.
Hoang, D. A., Le, H. V., Pham, D. V., Hoa, P. V., and Tien Bui, D. (2023). Hybrid BBO-DE Optimized SPAARCTree Ensemble for Landslide Susceptibility Mapping. Remote Sensing, 15(8).
https://baogialai.com.vn/tiem-an-nguy-co-chay-rung-post128443.html
https://vietnamnet.vn/en/vietnam-records-over-17-000-fires-in-five-years-2059848.html
Islam, A. M., Masud, F. B., Ahmed, M. R., Jafar, A. I., Ullah, J. R., Islam, S., Shatabda, S., and Islam, A. K. M. M. (2023). An Attention-Guided Deep-Learning-Based Network with Bayesian Optimization for Forest Fire Classification and Localization. Forests, 14(10).
Jain, P., Coogan, S. C. P., Subramanian, S. G., Crowley, M., Taylor, S., and Flannigan, M. D. (2020). A review of machine learning applications in wildfire science and management. Environmental Reviews, 28(4), 478-505.
Koh, J. (2023). Gradient boosting with extreme-value theory for wildfire prediction. Extremes, 26(2), 273-299.
Lacroix, K., Gifford, R., and Rush, J. (2020). Climate change beliefs shape the interpretation of forest fire events. Climatic Change, 159(1), 103-120.
Landis, J. R. and Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics, 33(1), 159-174.
Le, H. V., Bui, Q. T., Tien Bui, D., Tran, H. H., and Hoang, N. D. (2020). A Hybrid Intelligence System Based on Relevance Vector Machines and Imperialist Competitive Optimization for Modelling Forest Fire Danger Using GIS. Journal of Environmental Informatics, 36(1).
Le, H. V., Hoang, D. A., Tran, C. T., Nguyen, P. Q., Tran, V. H. T., Hoang, N. D., Amiri, M., Ngo, T. P. T., Nhu, H. V., Hoang, T. V., and Tien Bui, D. (2021). A new approach of deep neural computing for spatial prediction of wildfire danger at tropical climate areas. Ecological Informatics, 63, 101300.
Liu, Y., Goodrick, S. L., and Stanturf, J. A. (2013). Future U.S. wildfire potential trends projected using a dynamically downscaled climate change scenario. Forest Ecology and Management, 294, 120-135.
Luu, T. A., Chan, A. T., Hoang, T. H. N., and Le, B. B. (2014). Application of Remote Sensing Imagery and GIS in Establishment of Forest Fire Hazard Map in Daklak Province. Vietnam Journal of Earth Sciences, 36(3), 5908
McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425-1432.
Mermoz, M., Kitzberger, T., and Veblen, T. T. (2005). Landscape Influences on Occurrence and Spread of Wildfires in Patagonian Forests and Shrublands. Ecology, 86(10), 2705-2715.
Molnar, C. (2022). Interpretable Machine Learning (2nd ed.). Independently published
Nguyen, D. (2021, 24/12/2021). Potential Risk of Forest Fires. Gia Lai online.
Pourtaghi, Z. S., Pourghasemi, H. R., Aretano, R., and Semeraro, T. (2016). Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques. Ecological Indicators, 64, 72-84.
Powers, D. M. W. (2011). Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. International Journal of Machine Learning Technology, 2(1), 37-63.
Russell, S., and Norvig, P. (2021). Artificial Intelligence: A Modern Approach (4th ed.). Pearson.
Sarkar, M. S., Majhi, B. K., Pathak, B., Biswas, T., Mahapatra, S., Kumar, D., Bhatt, I. D., Kuniyal, J. C., and Nautiyal, S. (2024). Ensembling machine learning models to identify forest fire-susceptible zones in Northeast India. Ecological Informatics, 102598.
Sathishkumar, V. E., Cho, J., Subramanian, M., and Naren, O. S. (2023). Forest fire and smoke detection using deep learning-based learning without forgetting. Fire Ecology, 19(1), 9.
Singh, K. R., Neethu, K. P., Madhurekaa, K., Harita, A., and Mohan, P. (2021). Parallel SVM model for forest fire prediction. Soft Computing Letters, 3, 100014.
Singh, S. S., and Jeganathan, C. (2024). Using ensemble machine learning algorithm to predict forest fire occurrence probability in Madhya Pradesh and Chhattisgarh, India. Advances in Space Research, 73(6), 2969-2987.
Sutton, W. R., Srivastava, J. P., Koo, J., Vasileiou, I., and Pradesha, A. (2019). Striking a Balance: Managing El Niño and La Niña in Cambodia’s Agriculture. World Bank.
Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127-150.
Van, N. K., Ly, P. T., and Hong, N. T. (2014). Bioclimatic map of Tay Nguyen at scale 1:250,000 for setting up sustainable ecological economic models. Vietnam Journal of Earth Sciences, 36(4), 504-514.
Viedma, O., Moreno, J. M., Güngöroglu, C., Cosgun, U., and Kavgacı, A. (2017). Recent land-use and land-cover changes and its driving factors in a fire-prone area of southwestern Turkey. Journal of Environmental Management, 197, 719-731.
VietNamNet Global. (2022, 14/09/2022). Vietnam records over 17,000 fires in five years. VietNamNet Global.
Wilson, E. H., and Sader, S. A. (2002). Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sensing of Environment, 80(3), 385-396.
Các bài báo khác