Nghiên cứu lựa chọn chỉ số thực vật xác định hàm lượng Kali của cây lúa từ dữ liệu ảnh UAV đa phổ

- Tác giả: Lê Văn Cảnh, Phạm Thị Làn *
Cơ quan:
Trường Đại học Mỏ - Địa chất, Hà Nội, Việt Nam
- *Tác giả liên hệ:This email address is being protected from spambots. You need JavaScript enabled to view it.
- Từ khóa: Chỉ số thực vật, Dinh dưỡng cây lúa, Hàm lượng K, UAV đa phổ.
- Nhận bài: 15-09-2024
- Sửa xong: 31-12-2024
- Chấp nhận: 10-01-2025
- Ngày đăng: 01-02-2025
Tóm tắt:
Kali (K) là một trong số các chất dinh dưỡng không thể thiếu của quá trình trao đổi chất và phát triển của cây lúa, giúp tăng cường quang hợp và khả năng chống chịu bệnh. Mục tiêu của bài báo lựa chọn được chỉ số thực vật phù hợp tính từ các kênh phổ trên ảnh UAV để ước tính hàm lượng K của cây lúa. UAV đa phổ được sử dụng thu thập dữ liệu khu vực trồng lúa ở ba thời điểm: lúa đẻ nhánh (DN), lúa trổ bông (TB) và lúa chín sữa (CS). Tại cùng thời điểm bay chụp ảnh, mỗi ô ruộng được lấy ba mẫu lá tại ba vị trí khác nhau, phục vụ xác định hàm lượng K của lá lúa trong phòng thí nghiệm. Các chỉ số thực vật được lựa chọn trong nghiên cứu này bao gồm chỉ số RVI, SIPI và NDVI, có tương quan cao với hàm lượng K đo đạc trên lá, giá trị tương quan R lần lượt là 0,735; 0,729 và 0,722. Độ tin cậy của kết quả tính hàm lượng K ở mức cao với giá trị RMSE lên tới 0,27%. Hàm lượng K của cây lúa ở các giai đoạn DN, TB và CS là khác nhau và giảm dần. Hàm lượng K cũng khác nhau ở hai giống lúa TBR225 và J02. Kết quả nghiên cứu này là cơ sở cần thiết trong việc lựa chọn công nghệ UAV để phục vụ theo dõi, lựa chọn giải pháp bón phân hiệu quả trong sản xuất lúa gạo.

Ayala-Silva, T., and Beyl, C. A. (2005). Changes in spectral reflectance of wheat leaves in response to specific macronutrient deficiency. Advances in Space Research, 35(2), 305-317. doi: 10. 1016/j.asr.2004. 09.008
Broge, N. H., and Leblanc, E. (2001). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76(2), 156-172. doi: 10.1016/ S0034-4257(00)00197-8
Chen, J. M. (1996). Evaluation of Vegetation Indices and a Modified Simple Ratio for Boreal Applications. Canadian Journal of Remote Sensing, 22(3), 229-242. doi:10.1080/070389 92.1996.10855178
Chen, S., Hu, T., Luo, L., He, Q., Zhang, S., and Lu, J. (2022). Prediction of Nitrogen, Phosphorus, and Potassium Contents in Apple Tree Leaves Based on In-Situ Canopy Hyperspectral Reflectance Using Stacked Ensemble Extreme Learning Machine Model. Journal of Soil Science and Plant Nutrition, 22(1), 10-24. doi: 10.1007/s42729-021-00629-3
Daughtry, C. S. T., Walthall, C. L., Kim, M. S., de Colstoun, E. B., and McMurtrey, J. E. (2000). Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sensing of Environment, 74(2), 229-239. doi: 10. 1016/S0034-4257 (00)00113-9
DJI. (2022). P4 Multispectral Plant Intelligence for Targeted Action.
Grzebisz, W., Gransee, A., Szczepaniak, W., and Diatta, J. (2013). The effects of potassium fertilization on water‐use efficiency in crop plants. Journal of Plant Nutrition and Soil Science, 176(3), 355-374. doi:10.1002/ jpln.20 1200287
Haifa Group. (2024). Nutritional Recommendations for Rice.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., and Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1), 195-213. doi: 10. 101 6/S0034-4257(02)00096-2
Jiang, J., Cai, W., Zheng, H., Cheng, T., Tian, Y., Zhu, Y., Ehsani, R., Hu, Y., Niu, Q., Gui, L., and Yao, X. (2019). Using Digital Cameras on an Unmanned Aerial Vehicle to Derive Optimum Color Vegetation Indices for Leaf Nitrogen Concentration Monitoring in Winter Wheat. Remote Sensing, 11(22), 2667.
Jordan, C. F. (1969). Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology, 50(4), 663-666. doi: 10.2307/193 62 56.
Knipling, E. B. (1970). Physical and Physiological Basis for the Reflectance of Visible and Near-Infrared Radiation from Vegetation. Remote Sensing of Environment, 1, 155-159.
Kumar, P., Kumar, T., Singh, S., Tuteja, N., Prasad, R., and Singh, J. (2020). Potassium: A key modulator for cell homeostasis. Journal of Biotechnology, 324, 198-210. doi: 10.1016/j. jbiotec.2020.10.018
Lu, J., Li, W., Yu, M., Zhang, X., Ma, Y., Su, X., Yao, X., Cheng, T., Zhu, Y., Cao, W., and Tian, Y. (2021a). Estimation of rice plant potassium accumulation based on non-negative matrix factorization using hyperspectral reflectance. Precision Agriculture, 22(1), 51-74. doi: 10. 1007/s11119-020-09729-z.
Lu, J., Eitel, J. U. H., Engels, M., Zhu, J., Ma, Y., Liao, F., Zheng, H., Wang, X., Yao, X., Cheng, T., Zhu, Y., Cao, W., and Tian, Y. (2021b). Improving Unmanned Aerial Vehicle (UAV) remote sensing of rice plant potassium accumulation by fusing spectral and textural information. International Journal of Applied Earth Observation and Geoinformation, 104, 102592. doi: 10.1016 /j.jag.2021.102592.
Lu, J., Yang, T., Su, X., Qi, H., Yao, X., Cheng, T., Zhu, Y., Cao, W., and Tian, Y. (2020). Monitoring leaf potassium content using hyperspectral vegetation indices in rice leaves. Precision Agriculture, 21(2), 324-348. doi: 10.1007/s11 119-019-09670-w.
Ma, Y., Chen, Z., Yiguang, F., Bian, M., Guijun, Y., Chen, R., and Feng, H. (2023). Estimating potassium in potato plants based on multispectral images acquired from unmanned aerial vehicles. Frontiers in Plant Science, 14. doi: 10.3389/fpls. 2023.1265132
Mahajan, G. R., Sahoo, R. N., Pandey, R. N., Gupta, V. K., and Kumar, D. (2014). Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, sulphur and potassium in wheat (Triticum aestivum L.). Precision Agriculture, 15(5), 499-522. doi: 10.1007/s11 119-014-9348-7.
Nguyễn, X. K. (2017). Tuyển chọn giống lúa ngắn ngày và xác định các biện pháp kỹ thuật canh tác phù hợp ở tỉnh Quảng Bình. Đại học Nông lâm, Đại học Huế.
Peñuelas, J., Gamon, J. A., Fredeen, A. L., Merino, J., and Field, C. B. (1994). Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sensing of Environment, 48(2), 135-146. doi: 10. 1016/0034-4257(94)90136-8.
Phạm, S. T., and Chu, V. H. (2008). Bón phân cho lúa vùng đồng bằng sông Cửu Long. Paper presented at the Hội Nghị phân bón Bộ Nông nghiệp và Phát triển nông thôn, Việt Nam.
Pimstein, A., Karnieli, A., Bansal, S. K., and Bonfil, D. J. (2011). Exploring remotely sensed technologies for monitoring wheat potassium and phosphorus using field spectroscopy. Field Crops Research, 121(1), 125-135. doi: 10.1016/ j.fcr.2010.12.001.
Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., and Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119-126. doi: 10.1016/00 34-4257(94)90134-1.
Rondeaux, G., Steven, M., and Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55(2), 95-107.doi:10.1016/0034-4257(95)00186-7.
Rouse, J. W., Haas, R. H., Schell, J. A., and Deering, D. W. (1973). Monitoring Vegetation Systems in the Great Plains with ERTS (Earth Resources Technology Satellite). Paper presented at the Proceedings of 3rd Earth Resources Technology Satellite Symposium, Greenbelt.
Severtson, D., Callow, J., Flower, K., Neuhaus, A., Olejnik, M., and Nansen, C. (2016). Unmanned aerial vehicle canopy reflectance data detects potassium deficiency and green peach aphid susceptibility in canola. Precision Agriculture, 17. doi:10.1007/ s11119-016-9442-0.
Shrestha, J., Kandel, M., Subedi, S., and Shah, K. K. (2020). Role of nutrients in rice (Oryza sativa L.): A review. Agrica.
Trigunasih, N. M., and Saifulloh, M. (2022). Correlation Between Soil Nitrogen Content and NDVI Derived from Sentinel-2A Satellite Imagery. Jurnal Lahan Suboptimal. Journal of Suboptimal Lands, 11(2), 112-119. doi:10. 36706/jlso.11.2.2022.574.
Xu, S., Xu, X., Blacker, C., Gaulton, R., Zhu, Q., Yang, M., Yang, G., Zhang, J., Yang, Y., Yang, M., Xue, H., Yang, X., and Chen, L. (2023). Estimation of Leaf Nitrogen Content in Rice Using Vegetation Indices and Feature Variable Optimization with Information Fusion of Multiple-Sensor Images from UAV. Remote Sensing, 15(3), 854.
Xue, J., and Su, B. (2017). Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. Journal of Sensors, 2017, 1-17. doi:10.1155/2017/ 1353691.
Xuelian, P., Dianyu, C., Zhenjiang, Z., Zhitao, Z., Can, X., Qing, Z., Fang, W., and Xiaotao, H. (2022). Prediction of the Nitrogen, Phosphorus and Potassium Contents in Grape Leaves at Different Growth Stages Based on UAV Multispectral Remote Sensing. Remote Sensing, 14(11), 2659.
Yao, Q., Zhang, Z., Lv, X., Chen, X., Ma, L., and Sun, C. (2022). Estimation Model of Potassium Content in Cotton Leaves Based on Wavelet Decomposition Spectra and Image Combination Features. Frontiers in Plant Science, 13. doi: 10.3389/fpls.2022.920532.
Yu, Y., Yu, H., Li, X., Zhang, L., and Sui, Y. (2023). Prediction of Potassium Content in Rice Leaves Based on Spectral Features and Random Forests. Agronomy, 13(9), 2337.
Zhai, Y., Cui, L., Zhou, X., Gao, Y., Fei, T., and Gao, W. (2013). Estimation of nitrogen, phosphorus, and potassium contents in the leaves of different plants using laboratory-based visible and near-infrared reflectance spectroscopy: comparison of partial least-square regression and support vector machine regression methods. International Journal of Remote Sensing, 34(7), 2502-2518. doi: 10.1080/0143 1161.2012.7464 84.
Zhang, J., Cheng, T., Shi, L., Wang, W., Niu, Z., Guo, W., and Ma, X. (2022). Combining spectral and texture features of UAV hyperspectral images for leaf nitrogen content monitoring in winter wheat. International Journal of Remote Sensing, 43(7), 2335-2356. doi: 10.1080/01431161. 2021.2019 847.
Zheng, H., Cheng, T., Li, D., Zhou, X., Yao, X., Tian, Y., Cao, W., and Zhu, Y. (2018). Evaluation of RGB, Color-Infrared and Multispectral Images Acquired from Unmanned Aerial Systems for the Estimation of Nitrogen Accumulation in Rice. Remote Sensing, 10(6), 824.
Các bài báo khác