Application of electrical resistivity tomography (ERT) method in the evaluation of landslide at the X urban area project, Da Lat City

  • Affiliations:

    1 Institute of Earth Sciences, Vietnam Academy of Science and Technology, Hanoi, Vietnam
    2 Hanoi University of Mining and Geology, Hanoi, Vietnam

  • *Corresponding:
    This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Received: 30th-Nov-2024
  • Revised: 30th-Mar-2025
  • Accepted: 15th-May-2025
  • Online: 1st-June-2025
Pages: 50 - 63
Views: 30
Downloads: 0
Rating: , Total rating: 0
Yours rating

Abstract:

Landslides frequently occur during the rainy season in mountainous areas of our country with increasing intensity that results in significant loss of life and property. In this research, electrical resistivity tomography (ERT) is used to analyze the structural characteristics of shallow layers and evaluate their relationship with the landslide risk at the X urban area in western Da Lat city. Six geoelectrical profiles are carried out by using a four-electrode Wenner-Schlumberger configuration. The results found that the subsurface profile is divided into three layers: layer 1 is completely weathered reflecting a weak soil layer, layer 2 is a semi-weathered layer, and layer 3 characterizes the upper part of the solid rock layer. The fault and water-bearing zones possibly associated with landslide-prone areas are also detected by ERT. Notably, the connection with the current landslide conditions in this area demonstrates that landslides primarily occur in locations with a thick first layer, coinciding with fault zones that potentially contain water. The integrating resistivity results with topographic, geological - geomorphological data, as well as the physical properties of soil and rock collected from geotechnical boreholes, allows us to delineate and forecast landslide potentials of the studied area. The findings indicate that the high-risk zone is concentrated in the southeast of the study area, while the medium-risk zone is scattered in the western region, and the remaining areas are considered to have low potential.

How to Cite
Tran, T.Dang, Lai, P.Hop, Pham, D.Ngoc, Pham, T.Hong, Dinh, T.Van, Duong, N.Thi, Tran, H.Trung, Bui, T.Van and Pham, N.Duc 2025. Application of electrical resistivity tomography (ERT) method in the evaluation of landslide at the X urban area project, Da Lat City (in Vietnamese). Journal of Mining and Earth Sciences. 66, 3 (Jun, 2025), 50-63. DOI:https://doi.org/10.46326/JMES.2025.66(3).05.
References

Archie, G.E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AIME, 146(01), pp.54-62.

Bièvre, G., Jongmans, D., Winiarski, T., Zumbo, V. (2012). Application of geophysical measurements for assessing the role of fissures in water infiltration within a clay landslide (Trieves area, French Alps). Hydrol. Process. 26, 2128–2142

Crawford, M., and Bryson L. (2018). Assessment of active landslides using field electrical measurements. Eng Geol 233:146–159. https://doi.org/10.1016/j.enggeo.2017.11.012

Dat, P.N., Trang P.H., Phong L.H., Toan D.V., Ninh D.T., Tuan T.D., Thong K.D., Kien N.P. (2024). Application of Multi-Near-Surface Geophysical Surveys for Geothermal Spring: A Case Study in Kon Tum Province, Vietnam. Journal of Environmental and Engineering Geophysics, 29(1), 9-21.

Dostál, I., and Putiška R, Kušnirák D. (2014). Determination of shear surface of landslides using electrical resistivity tomography. Contrib Geophys Geodesy 44(2):133–147. https://doi.org/10.2478/congeo-2014-0008

Griffiths, D.H., Barker, R.D. (1993). Two-dimensional resistivity imaging and modelling in areas of complex geology. Ournal Appl. Geophys. 29, 21–26. http://dx.doi.org/10.1016/0926-9851(93)90005-J

Holec J, Bednarik M, Sabo M, Minar J, Yilmaz I, Marschalko M. (2013). A small-scale landslide susceptibility assessment for the territory of Western Carpathians. Nat Hazard 69:1081–1107. https://doi.org/10.1007/s11069-013-0751-6

Kamiński, M. (2015). Application of airborne laser scanning and electrical resistivity tomography in comprehensive research of landslides – example from the Dynow ´Foothill (Outer Carpathians). Prz. Geol. 63, 410–417. (in Polish)

Kamiński, M., Zientara, P., and Krawczyk, M. (2021). Electrical resistivity tomography and digital aerial photogrammetry in the research of the “Bachledzki Hill” active landslide – in Podhale (Poland). Engineering Geology, 285, 106004. https://doi.org/10.1016/j.enggeo.2021.106004

Lê, N. T., Nguyễn, V. G. (2012). Góp phần xác định nguyên nhân sạt lở bờ Sông Tiền và Sông Sài Gòn bằng các khảo sát địa vật lý gần mặt đất. Tạp chí các khoa học về trái đất, 34(3), 205–216.

Lê, N. T., Nguyễn, Q. D., Nguyễn, S. N., Nguyễn, P. H., Lưu, H. T. (2021). Thành lập bản đồ phân vùng nguy cơ trượt lở đất Thành phố Đà Lạt bằng phương pháp phân tích thứ bậc và hệ thông tin địa lý. Tạp chí khoa học đại học mở Thành phố Hồ Chí Minh - Kỹ thuật và Công nghệ,16(1), 142-155. https://doi.org/10.46223/HCMCOUJS. tech.vi.1 6.1.1229.2021.

Loke, M.H., Barker, R.D. (1996). Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys. Prospect. 44, 131–152. https://doi.org/10.1111/j.1365 2478.1996.tb00142.

Loke, M.H. (2010). RES2DINV ver. 3.59, Geoelectrical Imaging 2Dand3D, Geotomo software, 148p

Nguyễn Văn Cường và nnk. (1994-1995). Báo cáo thành lập bản đồ địa chất và khoáng sản nhóm tờ Đà Lạt tỉ lệ 1/50 000. Lưu trữ liên đoàn bản đồ địa chất Miền Nam.

Nguyễn, B. D., Hai, Đặng T., Minh, V. D., and Hiên, L. T. T. (2011). Nghiên cứu xác định nguyên nhân trượt lở khu vực cầu Móng Sến, tỉnh Lào Cai. Tạp chí các khoa học về trái đất, 33(2), 164–174. https://doi.org/10.15625/0866-7187/33/2/322.

Olabode, O. P., Lim, H. S., and Ramli, M. H. (2022). Geophysical and Geotechnical Evaluation of Landslide Slip Surface in a Residual Soil for Monitoring of Slope Instability. Earth and Space Science, 9(12), e2022EA002248. https://doi.org/10.1029/2022EA002248

Pasierb, B., Grodecki, M., and Gwóźdź, R. (2019). Geophysical and geotechnical approach to a landslide stability assessment: A case study. Acta Geophysica, 67(6), 1823–1834. https://doi.org/10.1007/s11600-019-00338-7

Park, S. G., and Kim, J. H. (2005). Geological Survey by Electrical Resistivity Prospecting in Landslide Area. Geosystem Engineering, 8(2), 35–42. https://doi.org/10.1080/12269328.2005.10541234

Panek T, Hradecky J, Silhan K (2008) Application of electrical resistivity tomography (ERT) in the study of various types of slope deformations in anisotropic bedrock: case studies from the Flysch Carpathians. Studia Geomorphol Carpatho-Balcanica 42:57–73

Perrone, A., Lapenna, V., and Piscitelli, S. (2014). Electrical resistivity tomography technique for landslide investigation: A review. Earth-Science Reviews, 135, 65–82. https://doi.org/10.1016/j.earscirev.2014.04.002

Nguyễn, V.T., và các tác giả (2024). Báo cáo tổng hợp đề tài “Nghiên cứu cơ sở khoa học, xây dựng hệ thống quan trắc cảnh báo trượt lở tự động tại một số khu đô thị trọng điểm khu vực Tây Nguyên”.

Reynolds, J.M. (1997) An introduction to applied and environmental geophysics. Wiley, Hoboken.

Tomecka-Suchoń, S., Żogała, B., Gołębiowski, T., Dzik, G., Dzik, T., Jochymczyk, K. (2017) Application of electrical and electromagnetic methods to study sedimentary covers in high mountain areas. Acta Geophys 65:743–755. https://doi.org/10.1007/s11600-017-0068-z

Sun, M., Liu, J., Ou, J., Liu, R., and Zhu, L. (2024). Electrical Resistivity Tomography (ERT) Investigation for Landslides: Case Study in the Hunan Province, China. Applied Sciences, 14(7), 3007. https://doi.org/10.3390/app14073007.

Trần, V. T., Văn, D. T., Nguyễn, T. T. H. (2006). Đặc điểm phát triển kiến tạo đới Đà Lạt và kế cận trong Mesozoi muộn - Kainozoi. Tạp chí các khoa học về trái đất, 28(2), 140–149.https://doi.org/10.15625/0866-7187/ 28/2/11654.

Other articles