Mapping of clay soils exposed to the shrinking - swelling phenomenon, with EO - 1 - Hyperion data in the region of Sidi - Chahmi, Algeria

  • Cơ quan:
    1 Laboratory of Sciences, Technology and Process Engineering, University of Sciences and Technology of Oran, Mohamed Boudiaf, BP 1505 El M’Naouer, 31000, Oran, Algeria
    2 Civil engineering Department, University of Sciences and Technology of Oran, Mohamed Boudiaf, BP 1505 El M’Naouer, 31000, Oran, Algeria
    3 Laboratory of Sciences, Technology and Process Engineering, University of Sciences and Technology of Oran, Mohamed Boudiaf, BP 1505 El M’Naouer, 31000, Oran, Algeria
  • Từ khóa: Cartography.Clay,Hyperspectral image,Shrinking - swelling.
  • Nhận bài: 12-08-2021
  • Chấp nhận: 27-11-2021
  • Đăng online: 31-12-2021
Trang: 1 - 7
Lượt xem: 496

Tóm tắt:

Satellite images have a remarkable ability to help researchers map the distribution and detect the nature of the soil exposed on the earth's surface. The remote-sensing mapping of clayey soils makes it possible to determine their shrinking-swelling potentials. This approach is helpful in analyzing large areas where the traditional sampling approach with laboratory analysis is expensive. This high cost often leads to a limited number of samples and thus to a poor representation of a site with an underestimation of the presence of swelling soils. The Sidi - Chahmi area is representative of this type of soil. In addition, it is an area that undergoes the substantial urban sprawl of the city of Oran. The urbanization of this area is under the risk of clay-type soil movements, the identification of which by satellite imagery may help mitigate shrink-swell risk. EO-1-Hyperion hyperspectral images, whose effectiveness has already been proven for mapping clay minerals, were used to identify minerals such as illite, montmorillonite, and kaolinite in the Sidi - Chahmi area.

Trích dẫn
Farid Rahal, Fatima - Zohra Baba - Hamed và Mohamed Hadjel, 2021. Mapping of clay soils exposed to the shrinking - swelling phenomenon, with EO - 1 - Hyperion data in the region of Sidi - Chahmi, Algeria, Tạp chí Khoa học kỹ thuật Mỏ - Địa chất, số 62, kỳ 6, tr. 1-7.
Tài liệu tham khảo

[1]. Aniref. (2018). Report on the Wilaya Of Oran. Agence Nationale d'Intermédiation et de Régulation Foncière.

[2]. Baba Hamed, F. Z., Rahal, D. D., Rahal, F., (2013). Seismic risk assessment of Algerian buildings in urban area. Journal of Civil Engineering and Management, 19(3), 348 - 363.

[3]. Bendraoua, F., Souiah, S. A., (2008). Quand les pouvoirs publics produisent de nouvelles marginalités urbaines: les recasés de Nedjma à Oran (Algérie). Autrepart, (1), 173 - 190.

[4]. Bendraoua, F., Bedidi, A., & Cervelle, B., (2011). Dynamique spatio - temporelle de l’agglomération oranaise (Algérie) par télédétection et SIG. Revue du comité français de cartographie, (209), 103 - 113.

[5]. Bengraa L., Hachichi A., Benaissa, (2008). Stabılısatıon des argıles gonflantes de la région d’Oran par ajout de sable. Actes du colloque international "Innovative Geotechnical Engineering, International Conference on Geotechnical Engineering” Hammamet, Tunisia.

[6]. Bhattacharya, S., Majumdar, T. J., Rajawat, A. S., Panigrahi, M. K., & Das, P. R., (2012). Utilization of Hyperion data over Dongargarh, India, for mapping altered/weathered and clay minerals along with field spectral measurements. International journal of remote sensing, 33(17), 5438 - 5450.

[7]. Bounoua, L., Safia, A., Masek, J., Peters - Lidard, C., & Imhoff, M. L., (2009). Impact of urban growth on surface climate: A case study in Oran, Algeria. Journal of applied meteorology and climatology, 48(2), 217 - 231.

[8]. Bourguignon, A., Delpont, G., Chevrel, S., & Chabrillat, S., (2007). Detection and mapping of shrink–swell clays in SW France, using ASTER imagery. Geological Society, London, Special Publications, 283(1), 117 - 124.

[9]. Chabrillat, S., Goetz, A. F., Krosley, L., & Olsen, H. W., (2002). Use of hyperspectral images in the identification and mapping of expansive clay soils and the role of spatial resolution. Remote sensing of Environment, 82(2 - 3), 431 - 445.

[10]. Cheng, B., Jiao, W., Wang, W., Zhang, X., Xiang, B., & Liu, H. (2008, May). Information extraction based on SAM of ASTER image. In 2008 Congress on Image and Signal Processing (Vol. 3, pp. 781 - 785). IEEE.

[11]. El - Magd, I. A., Mohy, H., & Basta, F., (2015). Application of remote sensing for gold exploration in the Fawakhir area, Central Eastern Desert of Egypt. Arabian Journal of Geosciences, 8(6), 3523 - 3536.

[12]. Gasmi, A., Gomez, C., Lagacherie, P., & Zouari, H., (2019). Surface soil clay content mapping at large scales using multispectral (VNIR–SWIR) ASTER data. International journal of remote sensing, 40(4), 1506 - 1533.

[13]. Ghomari, A., (2001). Genèse de la métropole oranaise: recomposition spatiale et dynamique sociale. Insaniyat. Revue algérienne d'anthropologie et de sciences sociales, (14 - 15), 83 - 97.

[14]. Ghosh, U. K., Naik, K. K., & Kesari, M. P., (2016). Digital image processing of multispectral ASTER imagery for delineation of alteration and related clay minerals in Sakoli belt: Maharashtra–A case study. Journal of the Geological Society of India, 88(4), 464 - 470.

[15]. Gourdier, S., & Plat, E., (2018). Impact du changement climatique sur la sinistralité due au retrait - gonflement des argiles.

[16]. Hachichi, A., & Fleureau, J. M., (1999). Caractérisation et stabilisation de quelques sols gonflants d’Algérie. Revue française de géotechnique, (86), 37 - 51.

[17]. Hachichi, A., Bourokba, S., & Fleureau, J. M., (2007). Stabilisation chimique de deux sols gonflants de la région d’Oran. Revue française de géotechnique, (118), 3 - 11.

[18]. Hachichi, A., Bourokba, S. A., Benaissa, A., Fleureau, J. M., Hattab, M., Taïbi, S., (2009). Etude des phénomènes retrait - gonflement et stabilisation des sols gonflants de la région d'Oran, Congrès Français de Mécanique.

[19]. Perry, S. L., (2004). Spaceborne and airborne remote sensing systems for mineral exploration - case histories using infrared spectroscopy. Infrared spectroscopy in geochemistry, exploration geochemistry, and remote sensing, 33, 227 - 240.

[20]. Rahal, F., Hadjou, Z., Blond, N., & Aguejdad, R., (2018). Croissance urbaine, mobilité et émissions de polluants atmosphériques dans la région d’Oran, Algérie. Cybergeo: European Journal of Geography.

[21]. Ramakrishnan, D., & Kusuma, K. N. (2008). Marine clays and its impact on the rapid urbanization developments: A case study of Mumbai area using EO - 1 - Hyperion data. Hyperspectral remote sensing and spectral signature applications, 53 - 64.

[22]. Said, A. (2005). Le logement social urbain et la dynamique spatiale. Stratégie des acteurs décideurs à Oran (1990 - 2000). Insaniyat. Revue algérienne d'anthropologie et de sciences sociales, (29 - 30), 231 - 247.

[23]. Yitagesu, F. A., van der Meer, F., van der Werff, H., & Zigterman, W., (2009). Quantifying engineering parameters of expansive soils from their reflectance spectra. Engineering geology, 105(3 - 4), 151 - 160.

[24]. Williams, A. A., & Donaldson, G. W., (1980). Building on expansive soils in South Africa: 1973 - 1980. In Expansive Soils (834 - 844). ASCE.

[25]. Yan - Hong, L. I. U., Shao - Feng, L. I. U., Chuan, Z. H. A. N. G., & Xiao - Yin, P. E. I., (2010). The Weight Information Extraction of Clay Minerals Based on Hyperion Data: A Case Study of Ganzhou Area, Jiangxi Province. Remote Sensing for Land & Resources, 22(3), 26 - 30.

[26]. Zazi, L., Boutaleb, A., & Guettouche, M. S., (2017). Identification and mapping of clay minerals in the region of Djebel Meni (Northwestern Algeria) using hyperspectral imaging, EO - 1 Hyperion sensor. Arabian Journal of Geosciences, 10(11), 252.

[27]. Zhang, X., & Pazner, M., (2007). Comparison of lithologic mapping with ASTER, hyperion, and ETM data in the southeastern Chocolate Mountains, USA. Photogrammetric Engineering & Remote Sensing, 73(5), 555 - 561.