Tổng quan các phương pháp tái chế từ màn hình LCD phế thải

  • Cơ quan:

    Trường Đại học Mỏ - Địa chất, Hà Nội, Việt Nam

  • *Tác giả liên hệ:
    This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Nhận bài: 11-02-2021
  • Sửa xong: 20-05-2021
  • Chấp nhận: 18-06-2021
  • Ngày đăng: 20-07-2021
Trang: 80 - 93
Lượt xem: 2456
Lượt tải: 1019
Yêu thích: 5.0, Số lượt: 101
Bạn yêu thích

Tóm tắt:

Indi là một kim loại khan hiếm và ngày càng được sử dụng rộng rãi trong nhiều lĩnh vực, nhờ tính năng bán dẫn và quang điện từ của nó. Nguyên liệu chính từ khoáng sản để sản xuất ra indi là các sản phẩm phụ của nhà máy tinh luyện kẽm. Tuy nhiên, nguồn tài nguyên thứ cấp là các màn hình LCD phế thải lại chứa hàm lượng indi cao hơn nhiều so với nguồn tài nguyên từ khoáng sản. Trong các màn hình LCD phế thải có chứa đến 1.400 g/t In (tương đương 0,7 g/m2), trong khi đó các sản phẩm phụ của nhà máy tinh luyện kẽm chứa khoảng 100÷200 g/t In. Quá trình tái chế indi từ màn hình LCD phế thải trải qua ba khâu công nghệ: tháo dỡ màn hình LCD, thu hồi tấm kính ITO chứa indi và thu hồi kim loại indi. Bài báo này trình bày đặc điểm của indi trong màn hình LCD phế thải và các kỹ thuật sử dụng trong từng khâu công nghệ. Từ đó, đưa ra một vài quy trình tái chế indi cụ thể phù hợp với điều kiện tại Việt Nam.

Trích dẫn
Phạm Văn Luận và Trần Trung Tới, 2021. Tổng quan các phương pháp tái chế từ màn hình LCD phế thải, Tạp chí Khoa học kỹ thuật Mỏ - Địa chất, số 62, kỳ 3b, tr. 80-93.
Tài liệu tham khảo

Aizawa, H., Yoshida, H., Sakai, S., (2008). Current results and future perspectives forJapanese recycling of home electrical appliances. Resour. Conserv. Recycl. 52,1399–1410.

Akcil, A., and Agcasulu, I., (2015), Critical Metal: indium and its Recovery from Waste LCD Monitor. Recycling Industry, May, pp. 54–59 (in Turkish).

Andres, U., Bialecki, R., 1986. Liberation of mineral constituents by high-voltagepulses. Powder Technol. 48, 269–277.

Boundy, T., Boyton, M., and Taylor, P., 2017, Attrition scrubbing for recovery of indium from waste liquid crystal display glass via selective comminution. Journal of Cleaner Production, 154. pp. 436–444.

Chou, W., Huang, Y., 2009. Electrochemical removal of indium ions from aqueoussolution using iron electrodes. J. Hazard. Mater. 172, 46–53.

Cui, J., Forssberg, E., 2003. Mechanical recycling of waste electric and electronicequipment: a review. J. Hazard. Mater. 99, 243–263.

Debabrata Pradhan, Sandeep Panda, and Lala Behari Sukla (2018) Recent advances in indium metallurgy: A review, Mineral processing and extractive metallurgy review. No 3, vol 39, 167 – 180.

Dodbiba, G., Nagai, H., Wang, L.P., Okaya, K., Fujita, T., 2012. Leaching of indiumfrom obsolete liquid crystal displays: comparing grinding with electricaldisintegration in context of LCA. Waste Manag. 32, 1937–1944.

Gartner, 2011. Market Trends: Worldwide, EMS and ODM TV Production. https://www.gartner.com/doc/1760714/market-trends-worldwide-ems-odm.

Gotze, R., Rotter, V.S.,2012. Challenges for the recovery of critical metals fromwaste electronic equipment – a case study of indium in LCD panels. In:Electronics Goes Green 2012+ (EGG). IEEE, Berlin, pp. 1–8.

Graedel, T. E., Allwood, J., Birat, J. P., Buchert, M., Hagelueken, C., Reck, B. K., Sibley, S. F., and Sonnemann, G., 2011, What do we know about metal recycling rates?. Journal of Industrial Ecology, 15. pp. 355–366.

Hasegawa, H., Rahman, I.M.M., Egawa, Y., Sawai, H., Begum, Z.A., Maki, T., et al.,2013. Chelant-induced reclamation of indium from the spent liquid crystaldisplay panels with the aid of microwave radiation. J. Hazard. Mater. 254–255,10–17.

He, Y., Ma, E., Xu, Z., 2014. Recycling indium from waste liquid crystal display panelby vacuum carbon-reduction. J. Hazard. Mater. 268, 185–190.

Hester, R.E., Harrison, R.M., 2009. Electronic Waste Management Design, Analysisand Application, 2. RSC Publishing, Cambridge, 27:55.

Higashi, A., Saitoh, N., Ogi, T., Konishi, Y., 2011. Recovery of indium by biosorptionand its application to recycling of waste liquid crystal display. J. Jpn. Inst. Metal75 (11), 620–625.

Inoune, K., Nishirua, M., 2008. Recovery of indium from spent panels of liquidcrystal display panels. Soc. Chem. Eng. 34, 282–286.

Jancovik, B., 2015, Isothermal thermo-analytical study and decomposition kinetics of non-activated and mechanically activated indium tin oxide (ITO) scrap powders treated by alkaline solution. Transactions of Nonferrous Metal Society of China, 25. pp. 1657−1676.

Jung, C., Osako, M., 2007. Thermodynamic behavior of rare metals in the meltingprocess of municipal solid waste (MSW) incineration residues. Chemosphere69, 279–288.

Kato, T., Igarashi, S., Ishiwatari, Y., Furukawa, M., Yamaguchi, H., 2013. Separationand concentration of indium from a liquid crystal display via homogeneousliquid–liquid extraction. Hydrometallurgy 137, 148–155.

Kim, W., Bae, I., Chae, S., Shin, H., 2009. Mechanochemical decomposition ofmonazite to assist the extraction of rare earth elements. J. Alloys Compd. 486,610–614.

Kopacek, B., 2010. ReLCD recycling and re-use of LCD panels. In: IEEE InternationalSymposium on Sustainable Systems and Technology (ISSST), Arlington, VA, pp.1–3.

Lee, C., 2004. A method for the recycling of scrap liquid crystal display. Knowl.Bridge 45, 2–3.

Lee, C., Jeong, M., Fatih Kilicaslan, M., Lee, J., Hong, H., Hong, S., 2013. Recovery ofindium from used LCD panel by a time efficient and environmentally soundmethod assisted HEBM. Waste Manag. 33, 730–734.

Li, J., Gao, S., Duan, H., Liu, L., 2009. Recovery of valuable materials from wasteliquid crystal display panel. Waste Manag. 29, 2033–2040.

Li, Y., Liu, Z., Li, Q., Liu, Z., Zeng, L., 2011. Recovery of indium from used indium–tinoxide (ITO) targets. Hydrometallurgy 105, 207–212.

Li, R., Yuan, T., Fan, W., Qiu, Z., Su, W., and Zhong, N., 2014, Recovery of indium by acid leaching waste ITO target based on neural network. Transactions of Nonferrous Metal Society of China, 24. pp. 257–262.

Ma, E., Lu, R., Xu, Z., 2012. An efficient rough vacuum-chlorinated separationmethod for the recovery of indium from waste liquid crystal display panels.Green Chem. 14, 3395–3401.

Ma, E., Xu, Z., 2013. Technological process and optimum design of organicmaterials vacuum pyrolysis and indium chlorinated separation from wasteliquid crystal display panels. J. Hazard. Mater. 263, 610–617.

Mi, G., Saito, F., Hanada, M., 1997. Mechanochemical synthesis of tobermorite bywet grinding in a planetary ball mill. Powder Technol. 93, 77–81.

Mi, G., Saito, F., Suzuki, S., Waseda, Y., 1998. Formation of CaTiO3by grinding frommixtures of CaO or Ca(OH)2with anatase or rutile at room temperature.Powder Technol. 97, 178–182.

Murase, K., Ozaki, T., Machida, K., Adachi, G., 1996. Extraction and mutualseparation of rare earths from concentrates and crude oxides using chemicalvapor transport. J. Alloys Compd. 233, 96–106.

Nakashima, K., Kumahara, Y., 2002. Effect of tin oxide dispersion on noduleformation in ITO sputtering. Vacuum 66, 221–226.

Peeters, J.R., Vanegas, P., Duflou, J.R., Mizuno, T., Fukushige, S., Umeda, Y., 2013.Effects of boundary conditions on the end-of-life treatment of LCD TVs. CIRPAnn. Manuf. Technol. 62, 35–38.

Pu, L., Yang, D., Guo, Y., 2012. Analyzing the main elements in waste TFT-LCD panelusing inductively coupled plasma atomic emission spectrometry. Environ.Pollut. Control, 76–78, p. 82.

Rocchetti, L., Amato, A., and Beolchini, F., 2016, Recovery of indium from liquid crystal displays. Journal of Cleaner Production, 116. pp. 299–305.

Rotter, V., Chancerel, P., and Ueberschaar, M., 2013, Recycling-oriented product characterization for electric and electronic equipment as a tool to enable recycling of critical metals. In: Kvithyld, A., et al. (eds), REWAS: Springer, Cham, pp. 192–201.

Ruan, J., Guo, Y., Qiao, Q., 2012. Recovery of indium from scrap TFT-LCDs by solventextraction. Proc. Environ. Sci. 16, 545–551.

Ryan, A., O’ Donoghue, L., and Lewis, H., 2011, Characterising components of liquid crystal displays to facilitatedis assembly. Journal of Cleaner Production, 19. pp. 1066–1071.

Savvilotidou, V., Hahladakis, J.N., Gidarakos, E., 2014. Determination of toxicmetals in discarded liquid crystal displays (LCDs). Resour. Conserv. Recycl. 92,108–115.

Schaeffer, N., Grimes, S. M., and Cheeseman, C. R., 2017, Use of extraction chromatography in the recycling of critical metals from thin film leach solutions. InorganicaChimicaActa, 457. pp. 53–58.

Schmidt, M., 2005. A production-theory-based framework for analysing recyclingsystems in the e-waste sector. Environ. Impact Assess. Rev. 25,505–524.

Takahashi, K., Sasaki, A., Dodbiba, G., Sadaki, J., Fujita, T., 2007. A Novel Process for Recovering Indium from the Liquid Crystal Display of the Discarded CellularPhones by Means of Vaporization at Relatively Low Temperature, vol. 2. Gesellschaft fur Bergbau Metallurgie, Dusseldorf, Germany, pp. 611–622.

Takahashi, K., Sasaki, A., Dodbiba, G., Sadaki, J., Sato, N., Fujita, T., 2009. Recovering indium from the liquid crystal display of discarded cellular phones by means ofchloride-induced vaporization at relatively low temperature. Metall. Mater.Trans. A 40, 891–900.

Tolcin, A., 2016, Mineral Commodity Summaries: indium, Reston, Virginia: USGS.

Wang, H., 2011. The effect of the proportion of thin film transistor-liquid crystaldisplay (TFT-LCD) optical waste glass as a partial substitute for cement incement mortar. Constr. Build. Mater. 25, 791–797.

Wang, X., Lu, X., Zhang, S., 2013. Study on the waste liquid crystal displaytreatment: focus on the resource recovery. J. Hazard. Mater. 244–245,342–347.

Wang, R., Xu, Z., 2014. Pyrolysis mechanism for recycle renewable resource frompolarizing film of waste liquid crystal display panels. J. Hazard. Mater. 278,311–319.

Werner, T. T., Mudd, G. M., and Jowitt, S. M., 2017, The world’s byproduct and critical metal resources part III: A global assessment of indium. Ore Geology Reviews, 86. pp. 939–956.

Yang, D., 2012. The Experiment Study on Recycling Indium in Waste Liquid CrystalDisplay Panels. Southwest Jiatong University.

Yang, J., Retegan, T., Ekberg, C., 2013. Indium recovery from discarded LCD panelglass by solvent extraction. Hydrometallurgy 137, 68–77.

Zhang, G., Xu, G., 2013. Technology development of treatment for waste LCD. J.Shanghai Sec. Polytech. Univ. 30 (4), 270–274.

Zhang, F., Wei, C., Deng, Z., Li, X., Li, C., and Li, M., 2016, Reductive leaching of indium-bearing zinc residue in sulfuric acid using sphalerite concentrate as reductant. Hydrometallurgy, 161. pp. 102–106.

Zhao, K., Liu, Z., Wang, Y., Jiang, H., 2013. Study on recycling process for EOL liquidcrystal display panel. Int. J. Precis. Eng. Manuf. 14, 1043–1047.

https://www.epa.gov/sites/production/files/2014-08/documents/vietnam_country_presentation_2-_prof._hai.pdf

https://vi.wikipedia.org/wiki/M%C3%A0n_h%C3%ACnh_tinh_th%E1%BB%83_l%E1%BB%8Fng#:~:text=C%C3%B4ng%20ngh%E1%BB%87%20m%C3%A0n%20h%C3%ACnh%20tinh,c%C3%A1c%20k%C3%ADnh%20l%E1%BB%8Dc%20ph%C3%A2n%20c%E1%BB%B1c.