Ứng dụng phương pháp Random Forest dự báo vị trí có nguy cơ xảy ra lũ quét cho khu vực tỉnh Lào Cai

  • Cơ quan:

    1 Khoa Công nghệ thông tin, Trường Đại học Mỏ - Địa chất, Việt Nam
    2 Khoa Khoa học và Kỹ thuật Địa chất, Trường Đại học Mỏ - Địa chất, Việt Nam
    3 Viện Địa chất, Viện Hàn lâm Khoa học và Công nghệ Việt Nam, Việt Nam

  • *Tác giả liên hệ:
    This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Nhận bài: 18-08-2020
  • Sửa xong: 13-09-2020
  • Chấp nhận: 31-10-2020
  • Ngày đăng: 31-10-2020
Trang: 30 - 42
Lượt xem: 1730
Lượt tải: 721
Yêu thích: 5.0, Số lượt: 71
Bạn yêu thích

Tóm tắt:

Mục tiêu chính của nghiên cứu này là cung cấp một phương pháp xây dựng mô hình dự báo vị trí có nguy cơ xảy ra lũ quét ở khu vực Lào Cai, nơi bão nhiệt đới thường xuyên xảy ra, dựa trên thuật toán phân loại Random Forest. Nghiên cứu áp dụng cơ sở dữ liệu hệ thông tin địa lý (GIS) kết hợp với mô hình máy học xây dựng và kiểm chứng mô hình dự báo, trích xuất dữ liệu dựa trên khảo sát thực địa các vùng lũ quét tại tỉnh Lào Cai và dữ liệu không gian địa lý. Kết quả cho thấy mô hình có hiệu suất cao với độ chính xác phân loại là 94,76% trên tập dữ liệu huấn luyện và khả năng dự báo là 89,29% trên tập dữ liệu kiểm tra. Kết quả đã chứng minh mô hình có thể là một công cụ hiệu quả cho mô hình dự báo vị trí có nguy cơ xảy ra lũ quét, cung cấp thêm dữ liệu cho việc quy hoạch quản lý đất sinh hoạt, phòng chống, dự báo lũ quét cho khu vực tỉnh Lào Cai.

Trích dẫn
Ngô Thị Phương Thảo, Ngô Hùng Long, Nguyễn Quang Khánh, Bùi Thanh Tịnh, Trần Văn Phong, Nhữ Việt Hà và Nguyễn Thị Hải Yến, 2020. Ứng dụng phương pháp Random Forest dự báo vị trí có nguy cơ xảy ra lũ quét cho khu vực tỉnh Lào Cai, Tạp chí Khoa học kỹ thuật Mỏ - Địa chất, số 61, kỳ 5, tr. 30-42.
Tài liệu tham khảo

Beven, K., Kirkby, M., Schofield, N. and Tagg , A., (1984). Testing a physically-based flood forecasting model (TOPMODEL) for three UK catchments. Journal of Hydrology 69, 119-143.

Borga, M., Anagnostou, E. N. G., Blöschl and Creutin, J. D., (2011). Flash flood forecasting, warning and risk management: the HYDRATE project. Environmental Science and Policy 14, 834-844.

Breiman, L., (2002). Manual On Setting Up, Using, And Understanding Random Forests V3.1. Statistics Department University of California Berkeley, CA, USA,1, 58.

Breiman, L., (2015). Random forests leo breiman and adele cutler. Random Forests-Classification Description. Retrieved. http://www.stat. berkeley.edu/~breiman/RandomForests/cc_home.htm (accessed on 22 March 2016).

Brody, S. D., Zahran ,S., Maghelal , P., Grover,H. and Highfield, W. E., (2007). The rising costs of floods: Examining the impact of planning and development decisions on property damage in Florida. Journal of the American Planning Association 73, 330-345.

Bubeck, P. and Thieken, A. H., (2018). What helps people recover from floods? Insights from a survey among flood-affected residents in Germany. Regional Environmental Change 18, 287-296.

Bubeck, P., Botzen, W. J. W., Aerts, J. C. J. H., (2012). A review of risk perceptions and other factors that influence flood mitigation behavior. Risk Anal 32 (9), 1481-1495.

Bui Tien Dieu, Hoang Duc Nhat, (2017). A Bayesian framework based on a Gaussian mixture model and radial-basis-function Fisher discriminant analysis (BayGmmKda V1. 1) for spatial prediction of floods. Geoscientific Model Development 10, 3391. 

Bui Tien Dieu, Owe Lofman, Inge Revhaug and Oystein Dick, (2011). Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index và logistic regression. Natural Hazards 59, 1413.

Cantor, S. B. and Kattan,M. W., (2000). Determining the area under the ROC curve for a binary diagnostic test. SAGE Journals 20, 468-470. https://doi.org/10.1177/0272989X0002000410.

Cha Zhang, Yunqian Ma, (2012). Ensemble machine learning: methods and applications. Springer VIII, 332.

Chen, Y., Yeh, C. H., Yu, B., (2011). Integrated application of the analytic hierarchy process và the geographic information system for flood risk assessment and flood plain management in Taiwan. Natural Hazards 59, 1261-1276.

Destro, E., Amponsah, W., Nikolopoulos, E. I., Marchi, L., Marra, F., Zoccatelli, D. and Borga, M., (2018). Coupled prediction of flash flood response and debris flow occurrence: Application on an alpine extreme flood event. Journal of Hydrology 558, 225-237.

Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré G., Marquéz, J. R. G., Gruber, B., Lafourcade, B., Leitão, P. J., Münkemüller, C., McClean, Osborne, P. E., Reineking, B., Schröder, B., Skidmore, A. K., Zurell, D. and Lautenbach, S., (2013). Collinearity: a review of methods to deal with it và a simulation study evaluating their performance. Ecography 36, 27-46.

Fenicia, F., Savenije, H. H., Matgen, P. and Pfister, L., (2008). Understending and catchment behavior through stepwise model concept improvement. Water Resources Research 44.

Fortin, J.-P., Turcotte, R., S., Massicotte, Moussa , R., Fitzback, J. and Villeneuve, J. P., (2001). Distributed watershed model compatible with remote sensing and GIS data. I: Description of model. Journal of Hydrologic Engineering 6, 91-99.

GSO. 2017. Lao Cai statistical year book 2016 470. Hanoi: Statistical Publishing House.

Haq, M., Akhtar, M., Muhammad, S., Paras, S. and Rahmatullah, J., (2012). Techniques of remote sensing and GIS for flood monitoring và damage assessment: a case study of Sindh province, Pakistan. The Egyptian Journal of Remote Sensing and Space Science 15, 135-141.

Jayakrishnan, R., Srinivasan, R., Santhi, C. and Arnold, J., (2005). Advances in the application of the SWAT model for water resources management. Hydrological processes 19, 749-762.

Katerina Tzavella, Alexander Fekete, Frank Fiedrich, (2018). Opportunities provided by geographic information systems and volunteered geographic information for a timely emergency response during flood events in Cologne, Germany. Natural Hazards 91, 29-57.

Khosravi, K., Binh Thai Pham, Chapi, K., Shirzadi, A., Shahabi, H., Revhaug, I., Prakash, I. and Dieu Tien Bui, (2018). A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz watershed, northern Iran. Science of The Total Environment 627, 744-755.

Li, X. H., Zhang, Q., Shao, M. and Li, Y. L., (2012). A comparison of parameter estimation for distributed hydrological modelling using automatic và manual methods. In Advanced Materials Research 2372-2375. Trans Tech Publ.

Liu, Y. and De Smedt, F., (2005). Flood modeling for complex terrain using GIS and remote sensed information. Water Resources Management 19, 605-624.

Livingston, F., (2005). Implementation of Breiman’s Random Forestmachine learning algorithm. Machine Learning Journal Paper, 1-13.

Manfreda, S., Nardi, F., Samela, C., Grimaldi, S., Taramasso, A. C., Roth,G. and Sole A., (2014). Investigation on the use of geomorphic approaches for the delineation of flood prone areas. Journal of Hydrology 517, 863-876.

Martínez-Álvarez, F., Reyes, J., Morales-Esteban, A. and Rubio-Escudero, C., (2013). Determining the best set of seismicity indicators to predict earthquakes. Two case studies: Chile and the Iberian Peninsula. Knowledge-Based Systems 50, 198-210.

Martınez-Casasnovas, Ramos, J., M. and Poesen, J., (2004). Assessment of sidewall erosion in large gullies using multi-temporal DEMs and logistic regression analysis. Geomorphology 58, 305-321.

Mohammadzadeh, D., Bazaz, J. B. and Alavi, A. H., (2014). An evolutionary computational approach for formulation of compression index of fine-grained soils. Engineering Applications of Artificial Intelligence 33, 58-68.

Moore, I. D., Grayson, R. and Ladson, A., (1991). Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological processes 5, 3-30.

MSN_Flood. Water Science and Engineering10 (3), 175-183.

Nguyen Hong Quang, Jan Degener and Martin Kappas, (2015). Flash Flood Prediction by Coupling KINEROS2 and HEC-RAS Models for Tropical Regions of Northern Vietnam. Hydrology 2, 242.

Nikoo, M., Ramezani, F., Hadzima-Nyarko, M., Nyarko, E. K. and Nikoo, M., (2016). Flood-routing modeling with neural network optimized by social-based algorithm. Natural Hazards 82, 1-24.

Pizzuto, J. E., (1995). Downstream fining in a network of gravel‐bedded rivers. Water Resources Research 31, 753-759.

Razavi Termeh, S. V., Kornejady, A., Pourghasemi, H. R. and Keesstra, S., (2018). Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms. Science of The Total Environment 615, 438-451.

Reed, B. C., Brown, J. F., D., Lovel, T. R. and Merchant, J. W. and Ohlen, D. O., (1994). Measuring phenological variability from satellite imagery. Journal of Vegetation Science 5, 703-714.

Sahoo, B., Chatterjee, C., Raghuwanshi,N. S., Singh, R. and Kumar, R., (2006). Flood estimation by GIUH-based Clark and Nash models. Journal of Hydrologic Engineering 11, 515-525.

Santosh, K. Aryal, Russell, Mein, G., Emmett, O'Loughlin, M., (2003). The concept of effective length in hillslopes: assessing the influence of climate and topography on the contributing areas of catchments. Hydrological Processes 17, 131-151.

Smith, K. and Ward, R., (1998). Floods: physical processes and human impacts. Chichester, 382.

Flood susceptibility analysis and its verifi-cation using a novel ensemble support vector machine và frequency ratio method. Stochastic Environmental Research and Risk Assessment 29 (4), 1149

Các bài báo khác