A batch experiment for determining retardation factors of Ni2+, Zn2+, Cd2+, and Pb2+ in unsaturated zone of unconsolidated formation in Man Xa and Chau Khe communes, Bac Ninh province

  • Affiliations:

    1 Vietnam Association of Hydrogeology, Hanoi, Vietnam
    2 Institute for Nuclear Science and Technology, Hanoi, Vietnam
    3 Hanoi University of Mining and Geology, Hanoi, Vietnam

  • *Corresponding:
    This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Received: 28th-Feb-2024
  • Revised: 3rd-July-2024
  • Accepted: 20th-Aug-2024
  • Online: 1st-Oct-2024
Pages: 97 - 108
Views: 711
Downloads: 4
Rating: 1.0, Total rating: 40
Yours rating

Abstract:

This paper presents the results of a batch equilibrium adsorption experiment aimed at determining the retardation factors (R) of four heavy metal ions Ni2+, Zn2+, Cd2+, and Pb2+due to their adsorption on soil particles in an unsaturated zone. The experiments were carried out using clay-loam soil samples collected from Man Xa commune, Yen Phong district and Chau Khe commune, Tu Son city, Bac Ninh province, at two depths of 0÷15 cm and 15÷30 cm from the ground surface. The experimental adsorption procedure is followed by the equilibrium adsorption method. Results obtained showed that the adsorption of the 4 ions on soil particles in the two study areas is linear and followed the Freundlich model. This allows one to estimate the retardation factors of the 4 ions based on a model that includes the equilibrium adsorption coefficient (Kd), soil bulk density ((B) and soil porosity ((). The R values of the four ions in the soils of Man Xa and Chau Khe vary from 2.30÷16.27 depending on the nature of the adsorbate. Ion Pb2+ possesses the highest R value for Man Xa soil. The adsorption of Pb2+ is suggested to be followed by both physical and chemo-adsorption mechanisms, it participated in an ion-exchange process with protonium ion of goethite present in the soil, making the R value of the species to be different.

How to Cite
Dang, N.Duc, Vu, H.Thi, Mai, K.Dinh, Nguyen, K.Van, Nguyen, L.Van, Tran, L.Vu, Duong, T.Thanh Thi, Dao, B.Duc and Kieu, A.Van Thi 2024. A batch experiment for determining retardation factors of Ni2+, Zn2+, Cd2+, and Pb2+ in unsaturated zone of unconsolidated formation in Man Xa and Chau Khe communes, Bac Ninh province (in Vietnamese). Journal of Mining and Earth Sciences. 65, 5 (Oct, 2024), 97-108. DOI:https://doi.org/10.46326/JMES.2024.65(5).10.
References

Allison, J. D., and Allison, T. L. (2005). Partition coefficients for metals in surface water, soil, and waste. US Environmental Protection Agency, Office of Research and Development.

Almalike, L. B., AL-Asadi, A. A., Abdullah, A. S. (2020). Adsorption of lead and cadmium ions onto soils: Isotherm models, and thermodynamic studies. J Sci 33(4):702-717. doi: 10.35378/ gujs. 650923.

ASTM - D4646-16. (2016). Standard test method for 24-h batch-type measurement of contaminant sorption by soils and sediments, ASTM International, West Conshohocken, PA, 2016, www.astm.org.

Batool, F., Akbar, J., Iqbal, S., Noreen, S., Abbas Bukhari, S. N. (2018). Study of isothermal, kinetic, and thermodynamic parameters for adsorption of cadmium: An overview of linear and nonlinear approach and error analysis. Bioinorg Chem Appl 2018: 3463724. doi: 10.1155/2018/3463724.

Chabi, D. S., Tiejun, W., Mikouendanandi, M. R., Brice, E., Yibin, D., Yutao, Z. (2022). A review of the distribution coefficient (Kd) of some selected heavy metals over the last decade (2012-2021). J Geosci and Environ Prot 10: 199-242. www.scirp.org/journal/ gep.

Das, S.,  Sultana, K. W.,  Ndhlala, A. R., Mondal, M., and  Chandra, I. (2023). Heavy metal pollution in the environment and its impact on health: Exploring green technology for remediation. Environ Health Insights 17: 1178630 2231201259. Doi:10.1177/117863022312 01259.

EPA (1999). Understanding variation in partition coefficient, Kd values (Vol. I).

EPA (2004). Understanding variation in partition coefficient, Kd values (Vol. III).

Giang, A. (2022). Làng tái chế, cơ sở tái chế gây ô nhiễm môi trường: Để lại nhiều hệ lụy. Tạp Chí Điện tử: Môi trường và Cuộc sống (https://moitruong.net.vn/lang-tai-che-co-so-tai-che-gay-o-nhiem-moi-truong-bai-2-de-lai-nhieu-he-luy-45851.html. Truy cập ngày 2/6/2024.

Gomes, P. C., Fontes, M. P. F., Da Silva, A. G., De Mendonça, E., Netto, A. R. (2001). Selectivity sequence and competitive adsorption of heavy metals by Brazilian soils. Soil Sci Soc Am J 65(4):1115-21. doi.org/10.2136/sssaj2001. 6541115x.

Gupta, V. K., Gupta, M., Sharma, S. (2001). Process development for the removal of lead and chromium from aqueous solutions using red mud-an aluminium industry waste. Water Research 35(5):1125-1134. doi: 10.1016 /s0043-1354(00)00389-4.

Hoàng, N. H. (2018). Ô nhiễm kim loại nặng từ bãi chôn lấp rác thải đến môi trường đất: Bãi chôn lấp Kiêu Kỵ, Gia Lâm, Hà Nội. T/c Khoa học ĐHQG Hà Nội: Các khoa học Trái đất và Môi trường 34(2): 86-94. Doi: 10.25073/2588-1094/vnuees.4249.

Jothi, R. S., Hidayathulla, K. T., Pugazhlenthi, M., Thirumurugan, V. (2013). Removal of Pb (II) and Cd (II) ions from industrial waste water using Calotropis Procera roots. Intl J Eng Sci Invent 2(4): 01-06.

Kumar, A., Rout, S., Pulhani, V., and Kumar, A. V. (2019). A review on distribution coefficient (Kd) of some selected radionuclides in soil/sediment over the last three decades. J Radioanal and Nucl Chem 323: 13-26. doi.org/10. 1007/s10967-019-06930-x.

Nguyen, T. H. M., Dieke, P., Pham, T. K. T., Soren J., Pham, H. V., and Flemming, L. (2014). Adsorption and desorption of arsenic to aquifer sediment on the Red River floodplain at Nam Du, Vietnam. Geochim Cosmochim Acta 142: 587-600 doi:10.1016/j.gca.2014.07.014.

Núñez, J. E. V., Pineda, A. S., Ballesteros, N., Pérez, J. A. V. and Zachrisson, I. A. R. (2022). Isotherms of adsorption of heavy metals in soils and sediments of the La Villa River basin-Panamá. Intl J of Plant and Soil Sci. 34(3): 60-74.

Osae, R., Nukpezah, D., Darko, D. A., Koranteng, S. S., Mensah, A. (2023). Accumulation of heavy metals and human health risk assessment of vegetable consumption from a farm within the Korle lagoon catchment. Heliyon 9: e16005. doi: 10.1016/j.heliyon.2023. 316005.

Papini, M. P., Bianchi, A., Majone, M., and  Beccari, M. (2002). Equilibrium modeling of lead adsorption onto a “Red Soil” as a function of the liquid-phase composition Ind Eng Chem Res 41(8): 1946-1954. doi: 10.1021/ ie010594u.

Piwowarska, D., Kiedrzyńska, E., and Jaszczyszyn, K. (2024). A global perspective on the nature and fate of heavy metals polluting water ecosystems, and their impact and remediation. doi: 10.1080/10643389.2024.2317112.

QCVN 03-MT: 2015/BTNMT. Quy chuẩn kỹ thuật quốc gia về giới hạn cho phép của một số kim loại nặng trong đất. Bộ TNMT, 2015.

Sall, M. L., Diaw, A. K. D., Gningue-Sall, D., Aaron, S. E., Aaron, J. J. (2020). Toxic heavy metals: Impact on the environment and human health, and treatment with conducting organic polymers, a review. Environ Sci Pollut Res 27: 29927-29942. doi: 10.1007/s11356-020-09354-3.

Sharma, A., Katnoria, J. K., Kaur, M., Nagpa, A. K. (2022). Heavy metal pollution: A Global pollutant of rising concern. doi: 10.4018/978-1-4666-9734-8.ch001.

Swenson, H., and Studie, N. P. (2019). Langmuir’s theory of adsorption: A centennial Review. Langmuir 35(16):5409-5426. doi: 10.1021/ acs.langmuir.9b00154.

Tao, C., Tianxing, D., Yan, M. (2021). Reasonable calculation of the thermodynamic parameters from adsorption equilibrium constant. J Molecular Liquids 322: 11498. doi.org/10. 1016/ j.molliq.2020.114980.

TCVN 11399:2016. Tiêu chuẩn kỹ thuật quốc gia: Chất lượng đất-Phương pháp xác định khối lượng và độ xốp. Bộ KHandCN, 2016.

TCVN 5301:1995. Quy chuẩn kỹ thuật quốc gia: Chất lượng đất-Hồ sơ đất. Bộ TNMT, 1995

TCVN 6860:2001. Tiêu chuẩn kỹ thuật quốc gia: Chất lượng đất-Phương pháp xác định khối lượng theo thể tích nguyên khối khô. Bộ KHandCN, 2001.

Uygur, V., Karaduman, M. A., Kececi, M., Sukusu, E., Mujdeci, M. (2017). Competitive adsorption of heavy metals in different soils. Fresenius Environ Bull, 26(10): 6205-6211.

Van, G. A., Bostick, B. C., Pham, T. K. T., Vi, M. L., Nguyen, N. M., Phu, D. M., Pham, H. V., Radloff, K., Aziz, Z., Mey, J. L., Stahl, M. O., Harvey, C. F., Oates, P., Weinman, B., Stengel, C., Felix, F. F., Kipfer, R., and Berg, M. (2013). Retardation of arsenic transport through a Pleistocene aquifer Nature 501: 204-208. doi: 10.1038/nature12444.

Van, G. M. T. (1981). Non-equilibrium solute transport parameters from miscible displacement experiments. Research report No.119. US DoA. Sci and Edu Admin. US Salinity Lab, Riverside, California.

Van, G. M. T., and Wierenga, P. J. (2003). Solute Dispersion Coefficients and Retardation Factors. http://www.researchgate.net/ publication/313045737.

Zhan, X. M., Xuan, Z. (2003). Mechanism of lead adsorption from aqueous solutions using an adsorbent synthesized from natural condensed tannin. Water Res. 37: 3905-3912. doi:10.1016/S0043-1354(03)00312-9.

Other articles