Real-time prediction of formation lithology using drilling parameters: an example from Ca Tam oilfield

  • Affiliations:

    1 Hanoi University of Mining and Geology, Hanoi, Vietnam
    2 Joint Venture Vietsovpetro, Vungtau, Vietnam

  • *Corresponding:
    This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Received: 10th-Jan-2024
  • Revised: 28th-Apr-2024
  • Accepted: 19th-May-2024
  • Online: 1st-June-2024
Pages: 62 - 71
Views: 330
Downloads: 4
Rating: , Total rating: 0
Yours rating


Construction of stratigraphic column is an important stage in minerals exploration and researching the historical development of geological processes. Besides, determining and identifying the boundaries of lithological layers also helps a lot in minimizing the risk of drilling complications and incidents as well as increasing efficiency in drilling. In this study, the authors focus mainly on applying machine learning algorithms to classify lithology and identify stratigraphy directly from the real-time drilling data of 02 wells in the Ca Tam oil field. The proposed model has high accuracy, this result demonstrates the great superiority and effectiveness of applying this method. The model using the Fuzzy c-means algorithm has predicted and identified relatively accurately the three main lithological groups in the study area: sandstone, claystone, and clay. The study's encouraging findings demonstrate the need for further focus and funding on this new strategy in the future to raise the effectiveness of oil and gas well drilling in Vietnam.

How to Cite
Vu, D.Hong, Nguyen, H.Tien, Nguyen, V.The and Nguyen, A.Tuan 2024. Real-time prediction of formation lithology using drilling parameters: an example from Ca Tam oilfield (in Vietnamese). Journal of Mining and Earth Sciences. 65, 3 (Jun, 2024), 62-71. DOI:

Bezdek, J. C., Ehrlich, R., and Full, W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers and Geosciences, Volume 10, Issues 2-3, 191-203.

Chen, G. (2020). Study on Real-time Lithology Identification Method of Logging-while-drilling. IOP Conf. Series: Earth and Environmental Science, 546, 052007 doi:10. 1088/1755-1315/546/5/052007

Choudhury, A. (2014). A Simple Approximation to the Area Under Standard Normal Curve. Mathematics and Statistics, 2, 147-149.

Jian, S., Qi, L., Mingqiang, C., Long, R., Guihua, H., Chenyang, L., and Zixuan, Z. (2019). Optimization of models for a rapid identification of lithology while drilling - A win-win strategy based on machine learning. Journal of Petroleum Science and Engineering, 176, 321-341. https://doi. org/10.1016/j.petrol.2019.01.006

Khalifa, H., Tomomewo, O. S., Ndulue, U. F., and Berrehal, B. E. (2023). Machine Learning-Based Real-Time Prediction of Formation Lithology and Tops Using Drilling Parameters with a Web App Integration. Eng 2023, 13, 2443-2467. 10.3390/eng403 0139.

Li, T. T., Tong, J., Xiang, R. Y., and Yan, X. D. (2022). Research on Intelligent Lithology Identification Method Based on Real-Time Data of Drilling Wells. RICAI 2022, Dongguan, China, 890-895.

Mikkel, L. A., John-Morten, G., Ole, M. A. (2022). Classification of Drilled Lithology in Real-Time Using Deep Learning with Online Calibration. SPE Drilling and Completion, 26-37.

Moazzeni, A., Haffar, M. A. (2015). Artificial Intelligence for Lithology Identifcation through Real-Time Drilling Data. Earth Sci Clim Change, 6(3), 265. doi:10.4172/2157-7617. 10 00265.

Nguyễn, X. N. (2009). Chương trình phân tích thạch học theo tài liệu Địa vật lý giếng khoan. Tạp chí Khoa học và Công nghệ, 12, 6.

Romy, A., Aashish, M., Robello, S., and Amit, S. (2022). Real-Time Prediction of Litho- Facies From Drilling Data Using an Artificial Neural Network: A Comparative Field Data Study With Optimizing Algorithms. Journal of Energy Resources Technology, Vol. 144, 043003.

Trần, T. T. T., Nguyễn, T. T., Nguyễn, H. A., Lê, M. H., Nguyễn, T. A., and Trần, X. Q. (2021). Đặc trưng vật lý, thạch học của đá chứa Carbonate tuổi Devonian mỏ Bắc Oshkhotynskoye, Liên Bang Nga. Tạp chí Dầu khí, 3, 11-21.

Trần, T. T. T., Nguyễn, T. T., Nguyễn, T. T., Đỗ, Q. Đ., Nguyễn, H. A., and Nguyễn, T. T. T. (2019). Đặc trưng vật lý, thạch học của đá chứa Pliocene khu vực trung tâm bể Sông Hồng. Tạp chí Dầu khí, 8, 21-28.

Vũ, H. D., and Kiều, D. T. (2020). Phân loại thạch học từ các tham số vật lý trong tài liệu giếng khoan 1143, chương trình khoan đại dương tại biển đông bằng mạng trí tuệ nhân tạo. Báo cáo khoa học tại Hội nghị toàn quốc Khoa học Trái đất và Tài nguyên với Phát triển bền vững (ERSD2020), 113-116.

Yunxin, X., Chenyang, Z., Wen, Z., Zhongdong, L., Xuan, L., and Mei, T. (2018). Evaluation of machine learning methods for formation lithology identification: A comparison of tuning processes and model performances. Journal of Petroleum Science and Engineering, 160, 182-193. petrol. 2017.10.028.

Other articles