Simulation of thermal power plant source contribution to ambient air concentration in Cam Pha City, Quang Ninh province using AERMOD dispersion model

  • Affiliations:

    1 Hanoi University of Mining and Geology, Hanoi, Vietnam
    2 Vietnam National University of Agriculture, Hanoi, Vietnam

  • *Corresponding:
    This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Received: 4th-Jan-2022
  • Revised: 19th-Apr-2022
  • Accepted: 13th-May-2022
  • Online: 30th-June-2022
Pages: 35 - 42
Views: 4484
Downloads: 2520
Rating: 1.0, Total rating: 251
Yours rating

Abstract:

Cam Pha, the home of three major thermal power plants including Cam Pha, Mong Duong I and Mong Duong II, is one of the most important industrial cities in the North of Vietnam. Air pollution due to stacks emission is the biggest problem threatening Cam Pha City's sustainable development. In this study, the AERMOD modeling system was used to evaluate the impact of the stack emission by the thermal power plants on the ambient atmospheric environment. The maximum 1-HR, 24-HR, 99th percentile and annual average concentrations of TSP, SO2 and NO2 were simulated within the 40x40 km domain of 100x100 m grid spacing with the hourly meteorological data taken from 2018 to 2020. Air dispersion simulation is performed on the observed background gas concentration of the everyday environment. Hourly emission data of 10 primary stack sources of 3 factory groups were used as input data. The simulated spatial distribution of gases indicates the strong fluence of the mountainous topography on the dispersion of stack emission. Results also revealed that the maximum short-term stack emission at ground-level concentrations of SO2 and NO2 are much higher than the national standard, thus raising the risk of severe pollution. TSP pollution is less severe than SO2 and NO2 but still at a dangerous level. Since Cam Pha locates by the East Sea with the prevailing wind is heading northeast and east directions. The annual average concentrations of these pollutants indicate that the high terrain areas at the south and northwest of Cam Pha City, which block the flow of the stack emission, are the most affected regions by exhausted gases from industrial stacks.

How to Cite
Tran, Q.Anh, Nguyen, N.Hong Thi, Nguyen, P.Quoc and Nguyen, A.Mai 2022. Simulation of thermal power plant source contribution to ambient air concentration in Cam Pha City, Quang Ninh province using AERMOD dispersion model. Journal of Mining and Earth Sciences. 63, 3 (Jun, 2022), 35-42. DOI:https://doi.org/10.46326/JMES.2022.63(3).05.
References

Huertas, J.I., Huertas, M.E., Izquierdo, S., González, E.D., (2012). Air quality impact assessment of multiple open pit coal mines in northern Columbia. Journal of Environmental Management 93(1). 121-29.

Mazzeo, N.A. and Venegas, L.E., (2008). Design of an air-quality surveillance system for Buenos Aires city integrated by a NOx monitoring network and atmospheric dispersion models. Environmental Modelling and Assessment 13(3). 349-56.

Krzyzanowski, J., (2011). Water, Air and Soil Pollution 214. 253-73.

Seangkiatiyuth, K., Surapipith, V., Tantrakarnapa, K., Lothongkum, A. W., (2011). Application of the AERMOD modeling system for environmental impact assessment of NO2 emissions from a cement complex. Journal of Environmental Sciences 2011 23(6). 931-40.

Silverman, K.C., Tell, J.G., Sargent, E.V., Qiu, Z., (2007). Comparison of the industrial source complex and AERMOD dispersion models: case study for human health risk assessment. Journal of Air and Waste Management Association 57(12). 1439-46. 

Suadee, W., (2008). Assimilation capacity of Map Ta Phut industrial complex: according to AERMOD. Environmental Engineering Association of Thailand Yearbook and Directory. Environmental Engineering Association of Thailand. Thailand. 83-84.

Other articles