Mapping of clay soils exposed to the shrinking - swelling phenomenon, with EO - 1 - Hyperion data in the region of Sidi - Chahmi, Algeria

  • Affiliations:

    1 Laboratory of Sciences - Technology and Process Engineering, Oran, Algeria
    2 Civil engineering Department - University of Sciences and Technology of Oran, Oran, Algeria
    3 Laboratory of Sciences, Technology and Process Engineering, Oran, Algeria

  • *Corresponding:
    This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Received: 12th-Aug-2021
  • Revised: 9th-Nov-2021
  • Accepted: 30th-Nov-2021
  • Online: 31st-Dec-2021
Pages: 1 - 7
Views: 2313
Downloads: 1166
Rating: 5.0, Total rating: 115
Yours rating

Abstract:

Satellite images have a remarkable ability to help researchers map the distribution and detect the nature of the soil exposed on the earth's surface. The remote-sensing mapping of clayey soils makes it possible to determine their shrinking-swelling potentials. This approach is helpful in analyzing large areas where the traditional sampling approach with laboratory analysis is expensive. This high cost often leads to a limited number of samples and thus to a poor representation of a site with an underestimation of the presence of swelling soils. The Sidi - Chahmi area is representative of this type of soil. In addition, it is an area that undergoes the substantial urban sprawl of the city of Oran. The urbanization of this area is under the risk of clay-type soil movements, the identification of which by satellite imagery may help mitigate shrink-swell risk. EO-1-Hyperion hyperspectral images, whose effectiveness has already been proven for mapping clay minerals, were used to identify minerals such as illite, montmorillonite, and kaolinite in the Sidi - Chahmi area.

How to Cite
Rahal, F., Hamed, F.- Zohra Baba - and Hadjel, M. 2021. Mapping of clay soils exposed to the shrinking - swelling phenomenon, with EO - 1 - Hyperion data in the region of Sidi - Chahmi, Algeria. Journal of Mining and Earth Sciences. 62, 6 (Dec, 2021), 1-7. DOI:https://doi.org/10.46326/JMES.2021.62(6).01.
References

Aniref. (2018). Report on the Wilaya Of Oran. Agence Nationale d'Intermédiation et de Régulation Foncière.

Baba Hamed, F. Z., Rahal, D. D., Rahal, F., (2013). Seismic risk assessment of Algerian buildings in urban area. Journal of Civil Engineering and Management, 19(3), 348 - 363.

Bendraoua, F., Souiah, S. A., (2008). Quand les pouvoirs publics produisent de nouvelles marginalités urbaines: les recasés de Nedjma à Oran (Algérie). Autrepart, (1), 173 - 190.

Bendraoua, F., Bedidi, A., and Cervelle, B., (2011). Dynamique spatio - temporelle de l’agglomération oranaise (Algérie) par télédétection et SIG. Revue du comité français de cartographie, (209), 103 - 113.

Bengraa L., Hachichi A., Benaissa, (2008). Stabılısatıon des argıles gonflantes de la région d’Oran par ajout de sable. Actes du colloque international "Innovative Geotechnical Engineering, International Conference on  Geotechnical Engineering” Hammamet, Tunisia.

Bhattacharya, S., Majumdar, T. J., Rajawat, A. S., Panigrahi, M. K., and Das, P. R., (2012). Utilization of Hyperion data over Dongargarh, India, for mapping altered/weathered and clay minerals along with field spectral measurements. International journal of remote sensing, 33(17), 5438 - 5450.

Bounoua, L., Safia, A., Masek, J., Peters - Lidard, C., and Imhoff, M. L., (2009). Impact of urban growth on surface climate: A case study in Oran, Algeria. Journal of applied meteorology and climatology, 48(2), 217 - 231.

Bourguignon, A., Delpont, G., Chevrel, S., and Chabrillat, S., (2007). Detection and mapping of shrink–swell clays in SW France, using ASTER imagery. Geological Society, London, Special Publications, 283(1), 117 - 124.

Chabrillat, S., Goetz, A. F., Krosley, L., and Olsen, H. W., (2002). Use of hyperspectral images in the identification and mapping of expansive clay soils and the role of spatial resolution. Remote sensing of Environment, 82(2 - 3), 431 - 445.

Cheng, B., Jiao, W., Wang, W., Zhang, X., Xiang, B., and Liu, H. (2008, May). Information extraction based on SAM of ASTER image. In 2008 Congress on Image and Signal Processing (Vol. 3, pp. 781 - 785). IEEE.

El - Magd, I. A., Mohy, H., and Basta, F., (2015). Application of remote sensing for gold exploration in the Fawakhir area, Central Eastern Desert of Egypt. Arabian Journal of Geosciences, 8(6), 3523 - 3536.

Gasmi, A., Gomez, C., Lagacherie, P., and Zouari, H., (2019). Surface soil clay content mapping at large scales using multispectral (VNIR–SWIR) ASTER data. International journal of remote sensing, 40(4), 1506 - 1533.

Ghomari, A., (2001). Genèse de la métropole oranaise: recomposition spatiale et dynamique sociale. Insaniyat. Revue algérienne d'anthropologie et de sciences sociales, (14 - 15), 83 - 97.

Ghosh, U. K., Naik, K. K., and Kesari, M. P., (2016). Digital image processing of multispectral ASTER imagery for delineation of alteration and related clay minerals in Sakoli belt: Maharashtra–A case study. Journal of the Geological Society of India, 88(4), 464 - 470.

Gourdier, S., and Plat, E., (2018). Impact du changement climatique sur la sinistralité due au retrait - gonflement des argiles.

Hachichi, A., and Fleureau, J. M., (1999). Caractérisation et stabilisation de quelques sols gonflants d’Algérie. Revue française de géotechnique, (86), 37 - 51.

Hachichi, A., Bourokba, S., and Fleureau, J. M., (2007). Stabilisation chimique de deux sols gonflants de la région d’Oran. Revue française de géotechnique, (118), 3 - 11.

Hachichi, A., Bourokba, S. A., Benaissa, A., Fleureau, J. M., Hattab, M., Taïbi, S., (2009). Etude des phénomènes retrait - gonflement et stabilisation des sols gonflants de la région d'Oran, Congrès Français de Mécanique.

Perry, S. L., (2004). Spaceborne and airborne remote sensing systems for mineral exploration - case histories using infrared spectroscopy. Infrared spectroscopy in geochemistry, exploration geochemistry, and remote sensing, 33, 227 - 240.

Rahal, F., Hadjou, Z., Blond, N., and Aguejdad, R., (2018). Croissance urbaine, mobilité et émissions de polluants atmosphériques dans la région d’Oran, Algérie. Cybergeo: European Journal of Geography.

Ramakrishnan, D., and Kusuma, K. N. (2008). Marine clays and its impact on the rapid urbanization developments: A case study of Mumbai area using EO - 1 - Hyperion data. Hyperspectral remote sensing and spectral signature applications, 53 - 64.

Said, A. (2005). Le logement social urbain et la dynamique spatiale. Stratégie des acteurs décideurs à Oran (1990 - 2000). Insaniyat. Revue algérienne d'anthropologie et de sciences sociales, (29 - 30), 231 - 247.

Yitagesu, F. A., van der Meer, F., van der Werff, H., and Zigterman, W., (2009). Quantifying engineering parameters of expansive soils from their reflectance spectra. Engineering geology, 105(3 - 4), 151 - 160.

Williams, A. A., and Donaldson, G. W., (1980). Building on expansive soils in South Africa: 1973 - 1980. In Expansive Soils (834 - 844). ASCE.

Yan - Hong, L. I. U., Shao - Feng, L. I. U., Chuan, Z. H. A. N. G., and Xiao - Yin, P. E. I., (2010). The Weight Information Extraction of Clay Minerals Based on Hyperion Data: A Case Study of Ganzhou Area, Jiangxi Province. Remote Sensing for Land and Resources, 22(3), 26 - 30.

Zazi, L., Boutaleb, A., and Guettouche, M. S., (2017). Identification and mapping of clay minerals in the region of Djebel Meni (Northwestern Algeria) using hyperspectral imaging, EO - 1 Hyperion sensor. Arabian Journal of Geosciences, 10(11), 252.

Zhang, X., and Pazner, M., (2007). Comparison of lithologic mapping with ASTER, hyperion, and ETM data in the southeastern Chocolate Mountains, USA. Photogrammetric Engineering and Remote Sensing, 73(5), 555 - 561.