Using biochar from spent coffee grounds to treat pollution in livestock wastewater

  • Affiliations:

    1 Faculty of Environment, Hanoi University of Mining and Geology, Vietnam
    2 Institute of Environmental Science, Engineering and Management, Industrial University of Ho Chi Minh City, Vietnam
    3 Microbiology Laboratory, Quatest 1, Directorate for Standard Metrology and Quality, Vietnam

  • *Corresponding:
    This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Received: 18th-Aug-2020
  • Revised: 3rd-Sept-2020
  • Accepted: 31st-Oct-2020
  • Online: 31st-Oct-2020
Pages: 135 - 144
Views: 1648
Downloads: 542
Rating: 5.0, Total rating: 53
Yours rating


Four types of biochar material synthesized from spent coffee grounds by slow pyrolysis process CF1 (500(C/0.5h); CF2 (500(C/1.5h); CF3 (500(C/3h); CF4 (500(C/6h) is studied to treat two pollution parameters (COD and TSS) in livestock wastewater. Material characteristics were determined by SEM, EDX and BET methods. The results showed that the 4 samples of biochar materials were structured fiber clearly, the interplanar spacing which corresponds to the lattice plane. The C content in the biochar sample is higher than the initial raw material sample; the highest value recorded reaches 90.61% C (CF2). 100 mL of the original livestock waster water is filtered through columns with 4g of biochar CF1-CF4 during reaction times varied from 0h, 1h, 4h and 8h, the COD treatment efficiency and adsorption content of CF4 sample is highest of 96.41% and 188 mg/g after 8h, and the lowest value is 76.67% and 149.5 mg/g after 1h recorded in CF3 sample, however the COD value after treatment is still higher from 1.2 to 1.46 times than Vietnamese standard 62: 2016/MONRE - national technical regulation on the effluent of livestock. The CF3 material samples have the highest TSS treatment efficiency and adsorption content of 95.19% and 6.425 mg/g after 8h and the lowest of 66.78% and 4.575 mg/g recorded in CF1 samples after 1h, response the requirements of QCVN 62: 2016/MONRE. The results showed that biochar is a potential sorbent to removed pollutants from waste water.

How to Cite
Tran, H.Thu Thi, Nguyen, T.Xuan, Trinh, Y.Hai Thi, To, H.Thi, Dang, H.Thanh Thi, Vu, L.Thuy Thi, Nguyen, P.Thi and Dinh, T.Thu 2020. Using biochar from spent coffee grounds to treat pollution in livestock wastewater (in Vietnamese). Journal of Mining and Earth Sciences. 61, 5 (Oct, 2020), 135-144. DOI:

Abdelkreem, M., (2013). Adsorption of Phenol from Industrial Wastewater Using Olive Mill Waste. APCBEE Procedia 5, 349-357

Chen, B., Zaiming, C., and Shaofang, L., (2011). A Novel Magnetic Biochar Efficiently Sorbs Organic Pollutants and Phosphate. Bioresource Technology 102(2), 716-723.

Cui, J., Yunhua, Y., Yonghui, H., and Fangbai, L., (2015). Rice Husk Based Porous Carbon Loaded with Silver Nanoparticles by a Simple and Cost-Effective Approach and Their Antibacterial Activity. Journal of Colloid and Interface Science 455, 117-24.

Deng, Y., Tao, Z., and Qiming, W., (2017). Biochar Adsorption Treatment for Typical Pollutants Removal in Livestock Wastewater: A Review. Engineering Applications of Biochar, 71-82.

Doan, T. T., Thiery, H. T., Cornelia, R., Jean, L. J., and Pascal, J., (2015). Impact of Compost, Vermicompost and Biochar on Soil Fertility, Maize Yield and Soil Erosion in Northern Vietnam: A Three Year Mesocosm Experiment. Science of the Total Environment 514, 147-54.

Figueiredo, M. K. K., Caldas, K. N. C., Nascimento, B. P., Schroeder, P., and Romeiro, G. A., (2017). Use of biochar obtained from coffee grounds as adsorbent of dyes and solid biofuel. Revista Eletrônica em Gestão, Educação e Tecnologia Ambiental Santa Maria 21, 92-103.

Gehan, M. K., Tolba, Nasser, A. M., Barakat, A. M., Bastaweesy, E. A., Ashour, Hak, Y. K., Wael A., Mohamed H. E. N., Salem, S., and Al-Deyab., (2015). Effective and Highly Recyclable Nanosilica Produced from the Rice Husk for Effective Removal of Organic Dyes. Journal of Industrial and Engineering Chemistry 9, 134-45.

Hirata, M., Kawasaki, N., Nakamura, T., Matsumoto, K., Kabayama, M., Tamura, M., and Tanada, S., (2002). Adsorption of Dyes onto Carbonaceous Materials Produced from Coffee Grounds by Microwave Treatment. Journal of Colloid and Interface Science 254(1), 17-22.

Johanne Lehmann,. (2007). A Handful of Carbon. Nature 447(7141), 143-44.

Kizito, S., Wu, S., Kirui, W.K., Lei, M., Lu, Q., Bah, H., and Dong, R., (2015). Evaluation of Slow Pyrolyzed Wood and Rice Husks Biochar for Adsorption of Ammonium Nitrogen from Piggery Manure Anaerobic Digestate Slurry. Science of the Total Environment 505, 102-12.

Liu, N., Charrua, A. B., Weng, C. H., Yuan, X., and Ding, F., (2015). Characterization of Biochars Derived from Agriculture Wastes and Their Adsorptive Removal of Atrazine from Aqueous Solution: A Comparative Study. Bioresource Technology 198, 55-62.

Mohammadi, A., Cowie, A. L., Mai, T. L. A., Brandão, M., Rosa, R. A., Kristiansen, P., and Joseph, S., (2017). Climate-Change and Health Effects of Using Rice Husk for Biochar-Compost: Comparing Three Pyrolysis Systems. Journal of Cleaner Production 162, 260-72.

Ngo, P. T., Rumpel, C., Ngo, Q. A., Alexis, M., Vargas, G. V., Gil, M de la L. M., Dang, D. K., and Jouquet, P., (2013). Biological and Chemical Reactivity and Phosphorus Forms of Buffalo Manure Compost, Vermicompost and Their Mixture with Biochar. Bioresource Technology 148: 401-408.

Nguyễn Khởi Nghĩa, Nguyễn Thị Kiều Oanh, Đỗ Hoàng Sang and Lâm Tử Lăng., (2015). Khả Năng Cố Định vi Khuẩn Phân Hủy Hoạt Chất Thuốc Trừ Sâu Propoxur (Paracoccus SP. P23-7) Của Biochar. Tạp chí Khoa học Trường Đại học Cần Thơ 38 (2), 88-94

Nguyen Sang, (2016). Report of Research on the Use of Animal Waste Water by Biological Methods Combined with Membrane Filtration, Hanoi National University - Hanoi University of Science.

Pan, J., Jun, J., and Renkou, X., (2013). Adsorption of Cr(III) from Acidic Solutions by Crop Straw Derived Biochars. Journal of Environmental Sciences (China) 25(10), 1957-1965.

Sumalinog, D. A. G., Sergio, C. C., and Mark, D. G. de L., (2018). Evaluation of the Effectiveness and Mechanisms of Acetaminophen and Methylene Blue Dye Adsorption on Activated Biochar 

Derived from Municipal Solid Wastes. Journal of Environmental Management 210, 255-262.

TCVN 6491: 1999 (ISO 6060:1989) - Chất lượng nước – xác định nhu cầu oxi hóa học

TCVN 6625:2000 (ISO 11923:1997): Chất lượng nước - xác định chất rắn lơ lửng bằng phương pháp lọc.

Trịnh Thị Thu Hương, Vũ Đức Thao. (2015). Nghiên Cứu Sử Dụng than Bã Cà Phê Để Xử Lý Màu và Chất Hữu Cơ Trong Nước Thải Dệt Nhuộm. Tạp chí phân tích Hóa, Lý và Sinh học 20(2), 76-82. 

Truong Hong, (2018). Report of ‘Area and Output of Coffee in the World, Western Highlands Agriculture and Forestry Science Institute, 2018.

Tsai., and Wen Tien. (2017). The Potential of Pyrolysing Exhausted Coffee Residue for the Production of Biochar. Handbook of Coffee Processing By-Products. Sustainable Applications, 299-322.

Vũ Thị Mai and Trịnh Văn Tuyên, (2016). Nghiên Cứu Khả Năng Xử Lý Amoni Trong Môi Trường Nước Của than Sinh Học Từ Lõi Ngô Biến Tính Bằng H3PO4 và NaOH. Tạp chí Khoa học Đại học Quốc gia Hà Nội: Các Khoa học Trái đất và Môi trường 32(1S), 274-81.WHO Report, 2005.

Yang, Y., Lin, X., Wei, B., Zhao, Y., and and Wang, J., (2014). Evaluation of Adsorption Potential of Bamboo Biochar for Metal-Complex Dye: Equilibrium, Kinetics and Artificial Neural Network Modeling. International Journal of Environmental Science and Technology 11(4), 1093-1100.