Apply Matlab in Thingspeak Server to build the system measure and analyze data using IoT Gateway technology

  • Affiliations:

    Faculty of Electromechanics, Hanoi University of Mining and Geology, Vietnam

  • *Corresponding:
    This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Received: 22nd-June-2020
  • Revised: 5th-Sept-2020
  • Accepted: 31st-Oct-2020
  • Online: 31st-Oct-2020
Pages: 88 - 95
Views: 1226
Downloads: 691
Rating: 5.0, Total rating: 68
Yours rating


ThingSpeak is an open Internet of Things (IoT) platform with MATLAB® analytics that enables the collection and storage of sensor data in the cloud and development of IoT applications. The ThingSpeak IoT platform provides applications that allow data analysis and visualization in MATLAB. With MATLAB® analysis in ThingSpeak, MATLAB code can be executed to perform preprocessing, visualization, filtering, data analysis, and for object modeling applications. This paper presents researches on Matlab application in Thingspeak Server to build data measurement and analysis system using IoT LoRa Gateway technology. The research contents include suggestions on device configuration for the system, programming the Arduino board and LoRa Shield to collect measurement data from sensor nodes and communicate by LoRa waves to the LoRa Gateway. The LoRa Gateway will send data to Web Server based on Thingspeak's Cloud Service platform using MQTT (Message Queing Telemetry Transport). Thingspeak's Matlab interface will display online and store values from the sensor nodes. The system is integrated and tested on temperature and humidity monitoring model, evaluated for the results with the required accuracy. The research results allow the deployment of IoT Gateway system in practice for online measurement, analysis and data processing applications that require the use of algorithms and code generation in Matlab using Web Server.

How to Cite
Dang, C.Van, Nguyen, K.Duc, Dao, H. and Nguyen, L.The 2020. Apply Matlab in Thingspeak Server to build the system measure and analyze data using IoT Gateway technology (in Vietnamese). Journal of Mining and Earth Sciences. 61, 5 (Oct, 2020), 88-95. DOI:

Coleou, T., M. Poupon, and K. Azbel, (2003). Unsupervised seismic facies classification: A review and comparison of techniques and implementation. The Leading Edge, 22, 942–953.

David Lubo-Robles and Kurt J. Marfurt, (2018). Unsupervised seismic-facies classification using independent-component analysis. SEG International Exposition and 88th Annual Meeting, October 14-19 Oct , North Americar, Society of Exploration Geophysicists, 1603-1607.

Enwenode Onajite, (2014). Seismic Data Analysis Techniques in Hydrocarbon Exploration. Elsevier, 256.

IGS, (2018).  Báo cáo kết quả phân tích mẫu lõi (sidewall core) đặc biệt giếng D. VSP.

Lê Hải An, (2016). Báo cáo “Phân tích tổ hợp thuộc tính địa chấn nhằm dự báo sự phân bố và đặc tính của đá chứa trong lát cắt trầm tích Mioxen và Oligoxen, lô 09-3/12. VSP.

Mirza Naseer Ahmad, Philip Rowell, (2012). Application of spectral decomposition and seismic attributes to understand the structure and distribution of sand reservoirs within Tertiary rift basins of the Gulf of Thailand. The Leading Edge, 31, 630-634.

NIPI, (2016). Báo cáo: Kết thúc pha I-giai đoạn Tìm kiếm thăm dò lô 09-3/12, bể Cửu Long, thềm Lục địa Việt Nam.

Phan Thanh Liêm và Lê Hải An, (2013). “Nghiên cứu đối tượng turbidite Miocen giữa/muộn - Pliocen khu vực lô 04-1 bể Nam Côn Sơn qua phân tích thuộc tính địa chấn đặc biệt”, Tạp chí dầu khí, số 9, 8-15.

Satinder Chopra;  Kurt J. Marfurt, (2007). Seismic attribute for prospect identification and reservoir characterization. Tulsa: Society of Exploration Geophysicists, 464 

VSP, (2017). Báo cáo “Minh giải đặc biệt tài liệu địa chấn PSDM góc phương vị rộng 3D/4C trên lô 09-1” VSP.