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 The Middle Miocene carbonate is the main gas bearing reservoir in the 
southern part of the Song Hong basin. Carbonate reservoirs present challenges 
for engineers and geologists to characterize because of their complexity due to 
depositional and diagenetic processes. The log based calculated water 
saturation Sw for this complex carbonate reservoir bears a lot of uncertainties 
due to its heterogeneity that strongly affects to m and n values in the water 
saturation equation. As the calculated Sw strongly affects the Hydrocarbon 
Initially In Place (HIIP) estimation, the production performance prediction, etc., 
the alternative method using the Saturation Height Function (SHF) based on 
the capillary pressure was introduced. The SHF building process uses the 
combination of the result of HFU classification and permeability prediction 
given by machine learning methods, which have become a very useful tool for 
complex reservoir characterization such as carbonate reservoir for decades. 
Our obtained results allowed us to subdivide the carbonate reservoir into 5 
Hydraulic Flow Unit (HFU) by using unsupervised machine learning methods, 
and then the capillary pressure (Pc) curves were classified and a proper 
saturation-height function using Skelt Harrison equation was assigned to 
individual HFU after testing with common SHF equations. The HFU number for 
each individual point was predicted based on the log data measured along the 
borehole using the supervised machine learning techniques while the Sw was 
calculated using the chosen SHF model and the FWL defined on log curves and 
pressure data from RCI measurement. The Sw computed from the SHF model 
is reliable and can be used for water saturation estimation for the whole field 
for known FWL and predicted HFU numbers.  
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1. Introduction 

The CX gas field is located in the southern 
part of the Song Hong basin. Reservoir rocks are 
carbonates of the Middle Miocene age which 
developed on an isolated platform (length 
approximately 100km, and width approximately 
15km) on top of Triton Horst structural high. 

The Middle Miocene carbonate reservoir is a 
heterogeneous reservoir with different types of 
pores: interparticle, vuggy, and fractures with a 
wide range of porosity from several percent up to 
over 40% and high variation of permeability, from 
less than 1mD to over 2000 mD. 

The accurate modelling of water saturation is 
one of the factors that affects the hydrocarbon in 
place estimation, the prediction of recoverable 
hydrocarbon, the recovery process, and the future 
plans for developing such reservoirs. However, 
the water saturation is not only controlled by the 
porosity, lithofacies, and other parameters in the 
Archie formula but also by pore structure, shale 
content, and wettability that are not consistent in 
a carbonate reservoir and all of these factors will 
lead to the high uncertainty in the traditional 
method for water saturation estimation (Amin et 
al., 1987; Hamada and Al-Awad, 2001).  

Capillary pressure reflects the interaction of 

rock and fluids and is controlled by the pore 
geometry, interfacial tension, and wettability. The 
capillary pressure concept is an important 
parameter in volumetric studies where it is used 
to calculate field wide saturation-height 
relationships from core and log information 
(Harrison and Jing, 2001). Capillary pressure can 
be obtained from Special Core Analysis (SCAL) 
using the porous plate, centrifuge method, 
Mercury Injection method, etc. 

With Saturation Height Function (SHF), the 
geologist or reservoir engineer can predict the 
saturation anywhere in the reservoir for the given 
height above the free water level (FWL) and for a 
given reservoir permeability or porosity 
independently of Archie parameters. 

2. Dataset and workflow 

The dataset of cores and well logs was taken 
from the Middle Miocene carbonate reservoir of 
the CX field. The study dataset included over 1000 
core plugs of RCAL; Capillary pressure from 20 
porous plates and 132 MICP samples of 3 wells. 
Figure 1 shows the distribution of K, PHI, FZI, and 
a cross plot of K versus PHI from RCAL results. 

The core data was combined with 
conventional logging data including GR, LLD, LLS, 
MSFL, RHOB, NPHI, DTC, and DTS from 3 wells. 

Figure 1. Distribution of core permeability K_core, core porosity PHI_core, FZI_core and crossplot 
K_core vs Phi_core of wells in CX field. 
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The first attempt was done using the 
universal, normalized saturation curves 
generated from the Leverett J-function, however, 
the results show poor behavior due to the 
heterogeneity of the carbonate reservoir. 

To overcome that limitation, the rock typing 
method using the Hydraulic Flow Unit (HFU) 
approach was applied. An HFU is defined as that 
part of the reservoir volume comprising 
lithologies having reservoir characteristics, along 
with non-reservoir rocks and the fluids they 
contain. The flow unit has consistent physical 
characteristics that control fluid flow which are 
different from the characteristics of other 
reservoir volumes (Ebanks, 1987). Each flow unit 
contains core data and electric log data that can be 
correlated and mapped between wells. 

The HFU was originally introduced by 
Amaefule et al. (1993) et al. The technique was 
then developed by many researchers and applied 
to both carbonate and sandstone reservoirs. In 
this study, Flow Zone Indicators (FZI) analysis 
was used as a basis for HFU clustering. 

The workflow for water saturation 
estimation using the Saturation Height Function is 
as follows: 

1. HFU clustering using FZI value; 
2. Building SHF for each HFU; 

3. Permeability/ HFU prediction from a well 
log using machine learning; 
4. Sw estimation using built SHF for each 
depth above FWL. 
Saturation profiles were created for the 

Middle Miocene carbonate reservoir and their 
validity was checked against saturation profiles 
interpreted from electric logs.  

3. Results and Discussion 

3.1. HFU classification 

Based on over 1.000 core plugs of RCAL from 
3 wells in the study area, the FZI value was 
calculated and then clustered using an 
unsupervised machine learning technique. A total 
of 5 HFU was defined as the optimal number using 
the Elbow method and K_means clustering 
method (Figure 2). Each HFU has its range of FZI 
values and the FZI_mean.  

3.2. Building SHF for each HFU 

A total of 20 Pc curves from the porous plate 
method and 132 Pc curves from MICP data were 
collected from the study area. Each data point was  

Figure 2. HFU clustering using K-mean method result (K core - core permeability (mD), K 
prediction - predicted permeability (mD), PHI_core - core porosity (dec.). 
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assigned for the appropriate HFU using the HFU 
clustering result from the 1st step and plotted 
over the Sw data (Figure 3). 

The field wide SHF can be generated using 
various practical techniques that relate the 
capillary pressure curves to reservoir porosity, 
and permeability for each HFU. The classic 
method is based on Leverett’s J-function 
approach. Other commonly used methods include 
Brook Corey, Lambda, Thomeer and Skelt-
Harrison. All of the above method was applied for 
the study area and the Skelt-Harrison method 
gave the best result with the lowest error (Figures 
4a-4e).  

Skelt-Harrison method: 

The Skelt-Harrison method can be described 
by the following equation (1): 

𝑆𝑤 = 1 − 𝐴. 𝑒𝑥𝑝(− [
𝐵

ℎ + 𝐷
]

𝐶

) (1) 

where: Sw - water saturation at capillary 
pressure; A, B, C, D - the regression constants/ 
fitting parameters; h - height above Free Water 
Level (m); Sw - fraction of pore volume.  

The strength of Skelt’s function is that, rather 
than linearise the function using exponent, it 
makes use of its non-linearity to provide a fitted 
curve shape that actually looks like a capillary 
pressure curve (Harrison and Jing, 2001). 

The models are calculated using the PC_IFT 
system, assuming that they have the same pore 

throat. This transformation of the input SCAL 
measurements eliminates differences between 
methods and the liquid systems used, allowing for 
the comparison of data from different fields in one 
model on the same scale. 

𝑃𝑐 =
2 𝜎 𝑐𝑜𝑠 𝜃
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=
𝑃𝑐𝐿𝐴𝐵

𝜎𝐿𝐴𝐵 𝑐𝑜𝑠𝜃𝐿𝐴𝐵

 

𝑃𝑐𝑅𝐸𝑆 = 𝑃𝑐𝐿𝐴𝐵 .  
𝜎𝑅𝐸𝑆 𝑐𝑜𝑠 𝜃𝑅𝐸𝑆

𝜎𝐿𝐴𝐵 𝑐𝑜𝑠 𝜃𝐿𝐴𝐵
 

(2) 

The units are bars for PC, dyne/cm for IFT, 
and degrees for . 

The objective of the core build model is to 
generate modelled capillary pressure curves 
utilizing petrophysical properties like 
permeability and porosity. 

In the core build model, laboratory data is 
used to create capillary pressure curves by 
extrapolating point measurement information.  

The best fitting curve for each sample is 
determined based on the model type. Fitting 
parameters are defined if they are correlated to 
petrophysical properties, resulting in a matrix 
cross-plot that shows three parameters (porosity, 
permeability, and the square root of 
permeability/porosity ratio) using the Skelt-
Harrison model

Figure 3. Pc vs Sw for each HFU from study area. 
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Figure 4a. Histogram of the error computed on the Brook Corey model. 

Figure 4b. Histogram of the error computed on the Leverett J function. 

Figure 4c. Histogram of the error computed on the Lambda function. 

Figure 4d. Histogram of the error computed on the Thomeer model. 
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The matrix cross-plot comprises nine (9) 
sub-cross plots, with each containing five types of 
regression. A total of thirteen (13) possible 
regressions for each parameter are calculated and 
the one with the highest determination coefficient 
(R2) is selected. Using these regression equations 
and the petrophysical properties of each core 
sample, new fitting parameters are computed. 

The results of the water saturation best fit 
and capillary model for each HFU using the Skelt 
Harrison model are shown in the following 
Figures 5÷9. 

The selected parameters using the Skelt 
Harrison model for HFU 1 are as follows: 

• PC_IFT1 = (HAFWL * (0.98152 - 0.18014) 
* 0.0980665 * (1.0 / (50 * 1))) 

• A = 0.994759 
• B = (0.00279277 * Pow(POR, -1.35963)) 
• C = 1.12355 
• D = 0 
SW = Min(1, Max(0, If((B < 0 Or PC_IFT1 <= -

D), 1, 1 - A * Exp(-Pow(B / (D + PC_IFT1), C))))) 
The selected parameters using the Skelt 

Harrison model for HFU 2 are as follows:  
• PC_IFT1 = (HAFWL * (0.98152 - 0.18014) 

* 0.0980665 * (1.0 / (50 * 1))) 
• A = 0.992609 
• B = (0.0230608 * Pow(PERM, -

0.298812)) 
• C = 1.02147 
• D = 0 
SW = Min(1, Max(0, If((B < 0 Or PC_IFT1 <= -

D), 1, 1 - A * Exp(-Pow(B / (D + PC_IFT1), C))))) 
The selected parameters using the Skelt 

Harrison model for HFU 3 are as follows:  
• PC_IFT1 = (HAFWL * (0.98152 - 0.18014) 

* 0.0980665 * (1.0 / (50 * 1))) 
• A = 0.992855 

• B = (0.0252263 - 0.014156 * 
Log(Sqrt(PERM / POR))) 

• C = 1.00401 
• D = 0 
SW = Min(1, Max(0, If((B < 0 Or PC_IFT1 <= -

D), 1, 1 - A * Exp(-Pow(B / (D + PC_IFT1), C))))) 
The selected parameters using the Skelt 

Harrison model for HFU 4 are as follows:  
• PC_IFT1 = (HAFWL * (0.98152 - 0.18014) 

* 0.0980665 * (1.0 / (50 * 1))) 
• A = 0.995728 
• B = (0.0176328 - 0.00560397 * 

Log(PERM)) 
• C = 0.762647 
• D = 0 
SW = Min(1, Max(0, If((B < 0 Or PC_IFT1 <= -

D), 1, 1 - A * Exp(-Pow(B / (D + PC_IFT1), C))))). 
The selected parameters using the Skelt 

Harrison model for HFU 5 are as follows:  
• PC_IFT1 = (HAFWL * (0.98152 - 0.18014) 

* 0.0980665 * (1.0 / (50 * 1))) 
• A_PT1 = Pow(10, -0.490762 - 2.37374 * 

POR) 
• Lambda_PT1 = 0.332301 
• B_PT1 = -0.04702 
• SWi_PT2 = (0.482889 - 0.098745 * 

Log(PERM)) 
• PCe_PT2 = Pow(10, -3.55136 - 

0.000188502 * PERM) 
• G_PT2 = (0.685344 + 0.000782752 * 

PERM) 
SW = Min(Min(1, Max(0, A_PT1 * 

Pow(PC_IFT1, -Lambda_PT1) + B_PT1)),Min(1, 
Max(0, If(PC_IFT1 < PCe_PT2, 1, SWi_PT2 + (1 - 
SWi_PT2) * (1 - Pow(Exp(1), (G_PT2 / Ln 
(PCe_PT2 /PC_IFT1)))))))). 

Figure 4e. Histogram of the error computed on the Skelt Harisson model. 
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Figure 5. Water saturation best fit and capillary pressure model for HFU 1 using Skelt Harrison model. 

Figure 6. Water saturation best fit and capillary pressure model for HFU 2 using Skelt Harrison model. 

Figure 7. Water saturation best fit and capillary pressure model for HFU 3 using Skelt Harrison model. 

Figure 8. Water saturation best fit and capillary pressure model for HFU 4 using Skelt Harrison model. 
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3.3. Permeability/ HFU prediction from a well 
log using machine learning 

The permeability prediction from well logs 
data for uncored sections was performed using 
various supervised learning models. The 
correlation coefficient R2 and the RMSE Root 
Mean Squared Error of these models for both 
validation data and testing data were compared, 
and the most appropriate model (Gaussian 

Process Regression Exponential) was chosen 
(Table 1). 

The model was then applied to all the 
carbonate intervals. HFU number for each 
individual point will be assigned using the FZI 
value calculated from the predicted permeability 
and porosity from well logs. 

Sw estimation using built SHF for each depth 
above FWL 

Preset Validation Test Validation Test Validation Test Validation Test

1 Linear 0.516 0.463 0.266 0.215 0.39 0.361 0.679 0.717

2 Interactions 0.504 0.418 0.254 0.175 0.367 0.326 0.693 0.77

3 Robust 0.518 0.459 0.268 0.21 0.389 0.358 0.677 0.723

4 Stepwise 0.512 0.463 0.262 0.214 0.382 0.361 0.684 0.718

5 Fine 0.481 0.332 0.231 0.11 0.31 0.22 0.722 0.855

6 Medium 0.481 0.355 0.232 0.126 0.332 0.257 0.721 0.834

7 Coarse 0.543 0.437 0.295 0.191 0.384 0.323 0.644 0.749

8 Linear 0.518 0.461 0.269 0.213 0.39 0.36 0.676 0.72

9 Quadratic 0.489 0.394 0.239 0.155 0.338 0.287 0.712 0.795

10 Cubic 0.614 0.32 0.376 0.103 0.31 0.236 0.546 0.865

11 Fine 0.432 0.282 0.187 0.079 0.269 0.185 0.775 0.896

12 Medium 0.457 0.35 0.209 0.122 0.319 0.261 0.748 0.839

13 Coarse 0.523 0.454 0.274 0.206 0.382 0.341 0.67 0.729

14 Boosted 0.428 0.343 0.183 0.118 0.306 0.269 0.779 0.845

15 Bagged 0.416 0.287 0.173 0.082 0.279 0.209 0.792 0.892

16 Square Exponential 0.416 0.286 0.173 0.082 0.215 0.137 0.791 0.892

17 Matern 5/2 0.361 0.267 0.131 0.071 0.184 0.127 0.843 0.906

18 Exponential 0.329 0.235 0.108 0.055 0.16 0.11 0.87 0.927

19 Rational Quadratic 0.323 0.235 0.105 0.055 0.16 0.112 0.874 0.927

20 Narrow 0.454 0.352 0.206 0.124 0.315 0.267 0.752 0.837

21 Medium 0.452 0.337 0.204 0.113 0.283 0.239 0.754 0.851

22 Wide 0.5 0.341 0.25 0.117 0.267 0.182 0.699 0.846

23 Bilayered 0.449 0.38 0.202 0.145 0.298 0.251 0.757 0.81

24 Trilayered 0.481 0.315 0.232 0.099 0.303 0.216 0.721 0.869

MAE RSquared 

Neural 

Network

Model 

Number

Model 

Type

RMSE MSE

Linear 

Regression

Tree

SVM

Ensemble

Gaussian 

Process 

Regression

Table 1. The training result for permeability prediction using supervised machine learning. 

Figure 9. Water saturation best fit and capillary pressure model for HFU 5 using Skelt Harrison model. 
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The FWL for each well was defined using 
pressure data from the RCI/MDT log. The water 
saturation Sw_SHF was estimated using the built 
SHF for each depth above FWL.  

The Sw_SHF was checked against the log 
derived water saturation as there is no other 
source of water saturation; no direct 
measurement of Sw from core data is available.  

The estimated Sw_SHF was plotted against 
the log-derived water saturation SwT (Figure 10) 

From the plot, we can see that above the 
transition zone, the Sw_SHF and SwT values have 
many similarities, except for points with low 
porosity values. The permeability values at these 
points according to the core sample analysis 
results can still allow gas to flow (considering gas 
flow where permeability >0.1 mD), but the SwT 
results are quite high (>0.7), which is quite 
inappropriate. Thus, the result of estimated 
Sw_SHF in this zone is more optimal than log-
derived SwT.  

In the transition zone, there is a relatively 
large difference between Sw_SHF and SwT in well 
3 and well 4 (marked brown in track water 
saturation in Figure 10). The Sw_SHF is higher 
than SwT in this zone.  

The initial water saturation estimation in 
transition zones in heterogeneous reservoirs is 

long lasting challenge. Due to the lack of 
knowledge of Archie exponents such as m and 
especially n value, the log-derived saturation can 
bear considerable unreliability. Moreover, in the 
transition zone, True Formation Resistivity 
evaluation presents a wide range of uncertainties 
(Zahaf et al., 2014). Therefore, there is a strong 
need for an independent source of water 
saturation profile like water saturation from the 
SHF model.  

The water saturation distribution within the 
transition zone is controlled by the distribution of 
rock types (by HFU in this study). The height of the 
transition zone depends on the reservoir rock 
types. The better the reservoir quality, the thinner 
the transition zone, and vice versa. With dominant 
HFU 3 in this zone of wells 3, and 4, the water 
saturation will change gradually, not change 
dramatically as SwT. So the Sw_SHF shows a more 
reasonable behavior in this zone.  

4. Conclusion 

The study workflow combines the result of 
HFU classification, and permeability prediction 
using machine learning methods into the 
saturation height function building process.  

In the study area, the Skelt Harrison model 
gave the best result for SHF modeling. 

Figure 10. Sw estimation result using SHF model built for 5 HFUs. 
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The water saturation distribution within the 
transition zone depends on the distribution of 
HFU representing the rock qualities. The results of 
water saturation estimation using SHF differ from 
log-derived SwT, especially in wells 3 and 4 at the 
transition zone. The transition zone always exists 
in the field with water leg, and its thickness 
depends on rock quality. The Sw_SHF gave a 
better water profile in this zone over the log-
derived water saturation SwT. 

The Sw from the SHF model is reliable and 
can be applied for the whole field with known 
FWL and porosity-permeability distribution. 

Nomenclature 

DTC Compressional sonic log, µs/ft 
DTS Shear sonic log, µs/ft 
FZI  Flow Zone Indicator 
FWL Free Water Level 
GR  Gamma Ray 
K  Permeability, mD 
K_core Core permeability, mD  
HFU Hydraulic Flow Unit 
h  Height above free water level, m 
LLD Deep lateral log, ohm.m 
LLS Shallow lateral log, ohm.m 
MSFL Micro Spherical Focus Log, 

ohm.m 
NPHI Neutron porosity 
Pc  Capillary pressure, psi 
PHI Porosity 
PHI_core Core porosity 
RCAL Routine Core Analysis 
RHOB Density log, g/cm3 
SCAL Special Core Analysis 
SHF Saturation Height Function 
SwT Log-derived water saturation 
Sw_SHF Water saturation estimated from 

SHF. 
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