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 This paper proposes the modeling of the contact dynamics as a non-
smooth discrete element method (NSCD). The theoretical basis of a new 
approach which makes it possible to consider a better surface contact 
with friction between polyhedric discrete elements simultaneously is 
studied. The results of the application of the NSCD to investigate the 
verified examples present the stability conditions of jointed rock slopes. 
The rock mass is first geometrically represented through the 
distribution of discontinuities in the rock mass and the use of the 
LMGC90 code based on the discrete fracture network (DFN) method. 
The 3D computational models are analysed by using the LMGC90 based 
on the NSCD method. The application of the methodology of numerical 
simulation of multi-phase excavation of rock slope cut is provided. A 
case study of the data was performed on the benches of a limestone 
clues quarry situated in the south of France. The mechanical responses 
of the numerical rock mass are analysed and evaluated.  
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1. Introduction 

Discrete elements method as polydedron in 
numerical simulation was developed by 
(Cundall and Strack, 1979). In this paper, the 
algorithm of the general resolution used in the 
non-smooth contact dynamics (NSCD) method, 
and developed in the laboratory LMGC with the 
works (Jean, 1999). Non-smooth dynamics in 
contact frame is based on a node by node 
resolution of the contact. The laws of Signorini 

for unilateral contact and of Coulomb for 
friction are not regularized (Dubois and Jean, 
2006; Radjai and Richefeu, 2009). The NSCD 
method is distinguishable from the original 
smooth DEM due to the following features: An 
implicit scheme for intergrating the time 
discretized dynamical equation; A non-
regularized interaction law (Signorini 
unilateral contact and Coulomb dry friction);  
The possiblility for finite element discretzation 
in order to take into account the mechanical 
behaviour of rock blocks. 

_____________________ 
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2. Non-smooth contact dynamics method 

2.1. Introduction 

The NSCD method is relies on a special 
formulation of the mathematical and 
mechanical background allowing us to deal 
with some extended kinds of laws (coulomb 
friction, shock law). For the non-smooth in time, 
the occurrence of velocity jumps is a well know 
feature of the second order dynamics with 
unilateral constraints on the position even with 
continuous media.   

The contact forces between two bodies are 
bound by the principle of mutual actions. At any 
time of the evoluation of the system one needs 
to define the interaction locals and an 
associated local frame in order to describe the 
interaction behavior. 

It is assumed that one is able to define for 
each point (C) of the “candidate” boundary and 
its (unique) nearest point (A) on the 
“antagonist” boundary. It allows us to define for 
each couple of points a local frame (t, n, s) with 
n the normal vector of the antagonist boundary 
and (s, t) two vectors of its tangential plane is 
determined. 

The calcultation of contact forces in the 
NSCD method is performed in two steps. 

In the first step, the result of the interaction 
of the antagonist body (A) on the candidate 
body (C) can be considered to be equal to the 
force rα acting at the contac point beween these 
two bodies. At the contact α, the normal vector 

nα pointing from antagonist to candidate body 
two tangential vectors and, which define the 
tangential space by respecting this convention 
sα x tα = nα. On other hand, we denote the gap 
distance between bodies along the normal 
direction. This value will be negative if there is 
an interpenetration between the bodies. 

In the second step, by the definition of a 
linear mapping Hα, that relates the local forces 
to the global forces, verifying the lolling 
equation: 

Rα = Hα(q) rα 

where Hα(q) is a mapping which contains 
the local information about contactors. 

Finally, the global contacs forces can be 
obtained by the relation:  

R = ∑ 𝑅𝛼𝛼  

The same procedure is employed for the 
velocity calculation and the velocity of the 
bodies can be expressed in the local frame. 

The contact conditions are solved at the 
local level; the impulse force is R and the 
relative velocity U. The dynamic equations are 
solved at the global level with an algorithm of 
the NSCD method. The global impulse force is 
noted r and the global velocity vector is noted. 
H and H* are the mapping operators to pass 
from local to global unknowns (Jean, 1999; 
Mereau, 1998; Dubois, 2011), as shown in 
Figure 2. 

The NSCD method is distinguishable from 
the smooth DEM due to the following features: 
an implicit schema for integrating the time 
discretized dynamical equation; a non-
regularized interaction law (Signorini condition 

(1) 

Figure 1. A potential contact between 
two particles 

(2) 

Figure 2. Algorithm of the NSCD method 
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and contact law of Coulomb). The code Lmgc90 
is a general-purpose open-source software 
developed at LMGC Laboratory of Montpellier 
II, capable of modeling an extensive collection 
of deformable or undeformable particles of 
various shapes, with different interaction laws. 
Lmgc90 declares the mechanical models of DFN 
and the contact behavior in the discontinuities. 
The models of fractured rock mass on Lmgc90 
for the simulation and analysis under the NSCD 
method, for detailed explanation in (Dubois and 
Jean, 2006; Radjai and Richefeu, 2009). 

In these many choices, the NSCD method is 
used punctual contact with extended law 
(transmission of torque); multi-punctual 
contacts with classical interaction laws; 
continuous surfaced description. Less trivial in 
usual cases: not strictly convex (cubes, bricks); 
only locally convex (general polydedron, 
triangulated surface); not convex at all, it may 
be decomposed in not strictly convex shapes. 
Only in simplest cases (rigid body with strictly 
convex boundary) the interaction locus maybe 
considered as punctual. 

Collision detection is a huge problem. The 
most popular approach is defining a contact 
force R = k*g at each contact point where k is a 
stiffness and g is a measure of the 
interpenetration between a pair of objects. The 
value k depends on the nature of the objects, the 
type of interaction, and other elements of the 
simulation. No matter how k is chosen. Hence, 
when g is negative which generates force.  g is 
positive when the objects are no longer in 
contact.  

2.2. Signorini condition 

The NSCD of objects in contact has been 
extensively studied in the mechanical 
simulation of a jointed rock mass in contact. A 
contradiction with Signorini’s condition of 
contact shown in Figure. 5a at the point of 
contact, there exists a complementarity relation 
between the interpenetration distance g and 
normal contact force RN as such in Equation (3).  

RN ≥ 0; g ≥ 0; RN*g = 0 

where g is the algebraic distance between 
two bodies at the point of contact and RN is the 
amplitude of normal force needed to solve the 
contacts. In the case of frictional sliding, a 
tangential component RT is introduced, leading 
to a contact force R = (RN, RT). For the dynamical 
problem, it is more natural to formulate the 
unilateral contact in term of velocities with 
assuming g(to) ≥ 0 then t > to if g(t)  0 then UN 
≥0, RN ≥ 0, UN*RN =0 else RN =0.  

 

 
Figure 5. The relation curve of the contact in   

NSCD method: (a) Signorini condition and (b) 
Coulomb contact law 

2.3. Contact law of Coulomb  

Following the Coulomb contact law shown 
in Figure 5b, the sliding at the contact point only 
appears when the tangential component of the 
contact forces between two objects is large than 
the sliding threshold. This condition is given as 

{

𝑔 = 0 → |𝑅𝑇| ≤ 𝜇 𝑅𝑁 → nonsliding →  𝑈𝑇 = 0                                                         
𝑈𝑇 < 0 → 𝑅𝑇 = 𝜇 𝑅𝑁 → sliding towards the back                                                          
𝑈𝑇 > 0 → 𝑅𝑇 = −𝜇 𝑅𝑁 → sliding forwards                                                                      

  

where U = (UN, UT) is the sliding velocity 
vector between two objects,  = tan () is 
friction coefficient and  is the internal friction 
angle. It is existed a parameter  > 0 that 𝑈𝑇 =
 −. 𝑅𝑇  with frictional contact (Signorini-
Coulomb). 

3. Verification examples 

The block on an inclined surface used to 
test the model is a rigid block sliding on an 
inclined plane as depicted in Figure.6. In the 
case of the block on an inclined, the actions of  
contact are considered localized at points A and 

 
(3) 

(4) 
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B which assumed to always remain in dry 
contact with friction, on a tilted plane and 
subjected to its weight P applied to the centre of 
inertia. We have three equations and unknown 
nodal forces. Assuming that the solids are rigid, 
the sliding can only take place simultaneously 
at two ends A and B of the segment. We have a 
nonlinear problem to be solved, of four 
equations for four unknown variables. This 
method of modeling can be applied in 3D to the 
case of the contact (contact of convex) of an 
edge of a polyhedron with a plane surface. The 
case of the linear contact can be reduced to the 
2D case, in the plane of contact.  

The unit depth rectangular block of length 
b and height a lies on an inclined surface with a 
slope angle . The friction angle between the 
block and the inclined surface is specified 
through the joint friction angle . The aspect 
ratio of the block and orientation was chosen 
such that the mode of failure is sliding. The 
block on the inclined plane will accelerate down 
the plane. The block acceleration is determined 
by acceleration due to gravity (g), the slope 
angle (), and the angle of friction (). The 
analytical solution for the displacement of the 
block centroid due to gravity is estimated. 

 

 
Figure 6. Hypothesis of the distribution of the 

tangential actions in a direction 

The assumptions about normal and 
tangential actions providing the possibility to 
avoid the indetermintation in the case of plane 
contact are comprehensively explained by 
(Bohatier and Vinches, 2007). The contact force 

in each node is composed of normal and 
tangential forces. 

Here the hypothesis of a linear distribution 
of the tangential action is presented, with its 
mechanical consequences. For a 2D problem, 
we can write for the dependency of the 
tangential forces at A and B vertices shown in 
Figure 6 in a polygonal contact surface with 
regard to the normal forces. 

𝑅𝑇𝐴

𝑅𝑁𝐴
=  

𝑅𝑇𝐵

𝑅𝑁𝐵
 

RTA and RTB are the tangential forces RNA 
and RNB are the positive normal forces.  

Conditions of adherence of two nodes as 
Relation along x: RTA + RTB + Fx = 0 
Relation along y: RNA + RNB + Fy = 0 
Equilibrating of the normal and tangential 

actions at A and B vertices.  

-(RTA + RTB) 
𝑎

2
 + (RNA - RNB) 

𝑏

2
 = 0 

Contact force on each node is composed for 
normal and tangential forces at points A and B: 

RNA = − 
𝑎

2𝑏
 Fx - 

𝐹𝑦

2
 ; RNB = 

𝑎

2𝑏
 Fx - 

𝐹𝑦

2
  

𝑅𝑇𝐴 =
𝐹𝑥 ∙(𝐹𝑥∙

𝑎 

𝑏
 + 𝐹𝑦)

2∙𝐹𝑦
 ; 𝑅𝑇𝐵 =

𝐹𝑥 ∙( 𝐹𝑦−𝐹𝑥∙
𝑎

𝑏
)

2∙𝐹
 

The sliding conditions with the regard to 
the Coulomb friction laws occur along AB 

T = P*𝜇 

where P = m*g, m is the mass of block;  is 
the friction coefficient. For the other motion: 
RNA=RNB=-(m*g)/2; and for example, C = 0 Pa, 
=0.577 and a = 0.5 m, b = 1 m. 

The proposed assumption (5) is compatible 
with the sliding conditions with regard to the 
Coulomb friction law and the equiprojectivity 
property of the velocity field onto the contact. 
with problem geometry in the Figure 7, the 
block is analytically on the Table 1. 

For generalization to 3D problem, as first 
step a plane contact on a triangular surface can 
be considered, with the actions of contact 
located at its certices (Perales, 2007). After 
writing the Equation (5) for each edge of the 
triangle, 

(5) 

(6) 

(8) 

(9) 

(10) 

(11) 
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 it is possible to verify that these relations 

are compatible with the various situations 
including three nodes slide, a node is fixed with 
conditions of adherence and two nodes do not 
slide in which case the third node necessarily 
does not slide. 

Finally, a contact algorithm starts by the 
valuation of a sticking contact where the 

assumption (5) is taken into account. When a 
nodal contact force is greater than the 
authorized value by Coulomb’s law, it is limited. 
Then its direction is used to determine the 
sliding velocity. When the solid slides on a 
triangular surface, the set of 6 dynamic 
equations for one solid is consistent to 
determine the normal nodal contact force with 
three nodal contact points. When there are 
more than three nodal contact points the linear 
spatial dependency of normal forces and two 
tangential equations which given by the 
supplementary nodes provides the extra 
equations for the solution. 

The block on the inclined plane will 
accelerate down the plane. The block 

acceleration is determined by acceleration due 
to gravity (g): P=m*g =12262,5N and m = a*b* 
(=2500kg/m3, unit weight) of the block 
centroid due to gravity. Hence, Fy = P*cos; and 
Fx = Fy*tan with  >  or Fx = Fy*tan with  
< . 

Application on LMGC90 with case 
adherence  = 0° is shown in Figure 7a,  = 
10°<= 30°, as  shown in Figure 7b,  =  ( = 
30°), as shown in Figure 7c, and  = 40°<  = 
30°, as shown in Figure 7d which are verifed.  

When the calculation converge with the 
step of time dt=0.01 sec.: RTA=RTB=0 and 
RNA=RNB = 6131.25, N with  = 0°and  = 30° 
shown in Figure 8a;  = 10°and  = 30° shown 
in Figure 8b;  =  ( = 30°) Shown in Figure 8c; 
 = 40° and  = 30° with RT/RN =  = tan is 
shown in Figure 8d as a function of time. 

4. Numerical results using the NSCD 
method 

In this case, we have 61 discontinuities and 
stratification on 9 benches from the Clues 
quarry. This quarry of the Grave de Blausacs 
(06) is situated in France 20km north of Nice. 
The studied slope is excavated in the quarry, 
and the cut has an average benches height of 
15m with a slope of 70°. The grouping of 
discontinuities into 4 mains familes is based on 
their genesis and orientation. 

In the studied quarry, a significant cohesion 
exists, because no important block fall was 
mentioned but using no cohesion allows 
depicting the influence of the grouping on 
failure. The limit equilibrium stability method 
analysis is used for its rapidity allowing to 
obtain results, but stress-strain computation 
using LMGC90 in this case. 

Case ° f=tan() Fx, N Fy, N RNA, N RNB, N RTA, N RTB, N 

Adherence 

0 0 0 -12262.50 6131.25 6131.25 0 0 

10 0.1763 2129.36 -12076.21 5505.76 6570.44 -1158.55 -970.81 

30 0.5774 6131.25 -10619.64 3777.01 6842.63 -3950.59 -2180.66 

Sliding 40 0.8391 5423.41 -9393.62 3340.96 6052.66 -3494.51 -1928.90 

Table 1. The contact force on each node at A and B vertices 

 

Figure 7. Block sliding on inclined surface 
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Figure 10 shows the static results for the 
excavation procedure with the NSCD method in 
LMGC90. Jointed rock mass modeling deals 
with an application of rock mechanics with the 
case 3D and 2D model, as shown in Figure 11. 
The models created from the first and the third 

combinations were chosen to be applied in our 
simulation. The future slope modelling was 
simulated and assigned following the 
excavation procedure: preparation phase; 1 
excavation phase; 2 excavation phase; 3 
finishing phase. 

Figure 8. The assumptions about normal and tangential actions of block on inclined surface 
with case:  = 0°and  = 30° (a);  = 10°and  = 30° (b);  =  = 30°(c);  = 40° and  = 30° 

with RT/RN =  = tan (d) as a function of the time.  

Figure 9. Photo of the Clues quarry (a) and stereographic projection, in 4 mains families with 
spectral method and density plot (b) (Nguyen et al., 2014). 

(a) (b) 
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Figure 11. Model (2D) of a rock mass subjected for slope stability analysis purpose from 
model (3D), (Nguyen et al., 2014; Nguyen et al., 2015) 

Figure 10. Numerical rock mass before and after the slope cutting, the model rock mass during 
the excavation procedure: a- preparation phase; b- 1 excavation phase; c- 2 excavation phase; 

d- 3 finishing phase. Four discotninuities sets using the colour signify: one colour/set 
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Two stability critical for the whole rock 
masse were applied for the simulation during 
the excavation procedure: all rock blocks must 
not displace outside a limited zone of 25x25x50 
m which is 2.5 times larger than the initial rock 
mass and the velocity tolerance of all rock 
blocks must not be excess the predicted limit of 
1 m/s. 

The correlation of the contact parameters 
of model was studied and presented on the 
graphs of time versus the number of the 
contacts, shown in Figure 12; and the velocity of 
block unstable in the model, shown in Figure 
13. There are 4 blocks with the total volume of 
the unstable block 21,078 m3 in the state 3 is 2st 
excavation phase shown in Figure 14. 

Figure 12. Correlation of contact parameters into the model 

Figure 13 Correlation of the velocity versus the number of the unstable block into model 
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5. Conclusion 

The NSCD method approach relies on a 
NLGS algorithm into LMGC90. Considering, one 
by one, the local systems to solve for each 
contact α was determined. To verify the model, 
it is necessary to demonstrate that the solution 
it produces agrees within an acceptale margin 
of error with independent solution to the 
problem. The independent solution can be 
based on laboratory test cases, physical models, 
field case studies or an analytical solution. 

The contact dynamics method approach 
based on a joint model developed in this paper 
has been successfully in the LMGC90 software. 
Verification examples demonstrats that the 
new NSCD model is able to model the behavior 
of a jointed rock mass and produce results with 
good accuracacy comared to analytical 
solutions and DEM. 

In this paper, a new model is proposed for 
the plane contact, based on the spatial 
dependency of the tangential forces with 
regards to the normal forces by the NSCD 
method. Then, a jointed rock mass model is 
provided for application to rock mechanics 
with a reduction of computation time. 
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