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 In petroleum industry, the prediction of oil production flow rate plays an 
important role in tracking the good performance as well as maintaining 
production flow rate. In addition, a flow rate modelling with high 
accuracy will be useful in optimizing production properties to achieve the 
expected flow rate, enhance oil recovery factor and ensure economic 
efficiency. However, the oil production flow rate is traditionally predicted 
by theoretical or empirical models. The theoretical model usually gives 
predicted results with a wide variation of error, this model also requires a 
lot of input data that might be time-consuming and costly. The empirical 
models are often limited by the volume of data set used to construct the 
model, therefore predicted values from the applications of these models in 
practical condition are not highly accurate. In this research, the authors 
propose the use of an artificial neural network (ANN) to establish a better 
relationship between production properties and oil production flow rate 
and predict oil production flow rate. Using production data of 5 wells 
which use continuous gas lift method in X oil field, Vietnam, an ANN 
system was developed by using back-propagation algorithm and tansig 
function to predict production flow rate from the above data set. This ANN 
system is called a back-propagation neural network (BPNN). In 
comparison with the oil production flow rate data collected from these 
studied continuous gas lift oil wells, the predicted results from the 
constructed ANN achieved a very high correlation coefficient (98%) and 
low root mean square error (33.41 bbl/d). Therefore, the developed ANN 
models can serve as a practical and robust tool for oilfield prediction of 
production flow rate.  
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1. Introduction

Determination of oil production flow rate,
where direct rate measurement is not feasible, is 
a challenge to every petroleum engineer, 
especially in late production period wells 
produced by continuous flow gas lift. It is 
important and valuable to predict the production 
flow rate of these wells. The prediction can be 
used for tracking, and monitoring the wells 
performance, therefore it is useful in flow rate 
maintenance. In addition, flow rate modelling 
with high accuracy will be useful in predicting 
production properties to adjust and maintain flow 
rate, enhance oil recovery factor and ensure 
economic efficiency. 

The production flow rate was traditionally 
predicted by using theory or empirical models. 
However, theory models require a lot of data as 
input sources and some of them are not usually 
collected in practical production since it is time -
consuming and costly. 

A theory of correlation between production 
flow rate and other production properties was 
first introduced by Tangren in 1949 (Tangren et 
al., 1949). In this model, the fluid is multi-phase 
flow and the ratio of gas to liquid is less than 1. 
From the theory correlation of Tangren, empirical 
correlations were then developed by Gilbert 
(1954), Baxendell (1958) and Ros (1960). 

Gilbert used a 268 data set that included well 
head pressure, size of the choke, ratio of gas to 
liquid and critical flow liquid rate to generate an 
empirical equation as follows (Gilbert, 1954). 

Ql = PwhD64b

aGLRc
 (1) 

Where: Pwh - wellhead pressure (psia); D64 – 
the size of the choke (1/64 inch); GLR – the ratio 
of gas to liquid (Standard cubic feet/Stock tank 
barrel (SCF/STB)); Ql - critical-flow liquid rate 
(Stock tank barrel per day (STB/day)); a, b and c - 
the main coefficients evaluated based on 
sufficient data is available for certain reservoir 
with a = 435, b = 1.89, c = 0.546.  

The empirical equation (1) was then 
improved for a critical rate calculation by 
Baxendell (1958) and for a new correlation to 
derive oil and gas mass under critical flow 
condition by Ros (1960). A new set of coefficient 
values a = 0.2618, b = 1.88, c = 0.65 for Gilbert’s 

equation was developed by Achong (1961). 
Poettmann and Beck (1963) the rearranged 
model from Ros (1960) to a diagram based on 
field unit. Also, from Ros (1960), instead of using 
gas liquid ratio Ashford (1974) established an 
equation for critical multiphase flow in choke 
valves by using mixture density. Similarly, Al-
Towailib and Al-Marhoun developed a new 
equation for choke critical flow (Al-Towailib and 
Al-Marhoun, 1994). Based on extensive field data, 
Al-Attar and Abdul Majeed proposed new 
equations for different chokes' bean settings (Al-
Attar and Abdul-Majeed, 1988). 

All above empirical models were limited by 
the area of data used in the researches, each 
model only presents a specific research field. 
Therefore, these models were not widely used 
since the results from their applications in other 
fields did not usually show a good accuracy. 

To solve the limitations of theory and 
empirical, an artificial neural network (ANN) can 
be used as a good replacement method for 
connecting and modelling the complicated 
relationship between production flow rate and 
other related production properties. Some ANN 
models for the prediction of production flow rate 
have shown their high accuracy (Khamehchi et al., 
2009; Mirzaei-Paiaman and Salavati, 2012; 
Gorjaei et al., 2015; Rashida et al., 2019; Azim, 
2020; Khan et al., 2020; Ahmed et al., 2021; 
George, 2021; Barjouei et al., 2021). These models 
have shown their advantages in comparison with 
other traditional methods. However, the ANN 
method has not been applied for oil production 
wells using the continuous gas lift method. This 
paper presents the application of the ANN method 
for the prediction of the production flow rate of 
several continuous gas lift oil wells. 

2. Data processing (Noise removal)

During the training process, abnormal data
can be considered as noise since it can affect the 
accuracy and generality of ANN. Thus, raw data 
set needs to be cleaned before it can be used as 
training data set, the data is first corrected and the 
noise is removed by using an algorithm to identify 
Z-score (Tripathy et al., 2013). Z-score is 
identified by equation (2): 

z = | Xi - Xmean |/ SD (2)
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 Where: Xmean - the arithmetic average of the 
values, Xi - a value and SD is the standard 
deflection of value. From Tripathy et al. (2013), 
the Z-score is used to identify noise in a data set as 
follow: 

- If z < 2, the value is suitable to use; 
- If 2 < z < 3, the value could affect the overall 

result of training; 
- If z > 3, the value is noise and needs to be 

removed.      

3. Data analysis 

The selections of input data for training ANN 
is an important step that affects the accuracy of 
the model. In order to decide on input data, the 
authors analyze the correlations between 

production rate and other production properties 
from 05 production oil wells (01, 02, 03, 04 and 
05) in X oil field, Vietnam. 

Since R2 is a statistical measurement that 
represents the relationship between two 
variances, a close to 1 of R2 value indicates a 
strong correlation between production flow rate 
and one of the other production properties. The 
results from Figure 1 indicate that all production 
data except BS&W does not correlate well with 
the oil production flow rate, thus they can be used 
as input data for the ANN training process. 

3.1. Data normalized 

Since data from the data set is in different 
scales and units which could affect the efficiency 

 
Figure 1. Correlations between production flow rate (Q1) and a) choke size; b) wellhead pressure 

(Pwh); c) ratio of gas to liquid (GLR); d) Free water, sediment and emulsion (BS&W); e) injected gas lift 
rate Qglift; f) injected gas lift pressure (Pannulus). 
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of the algorithm, practical time and the accuracy 
of the ANN model, the normalization of the data 
set is necessary to give all data in the same scale 
from 0 to 1. The normalized value is calculated as 
follows: 

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑋𝑋−𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚
𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚−𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

       (3) 

Where: 𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 - normalized value; X - the 
value of data; 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 - the minimum value of data; 
𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum value of data. 

3.2. ANN model construction for the prediction 
of oil production flow rate 

An artificial neural network is a 
computational model that mimics the way a 
biological neural signals to another. An ANN 
system is comprised of a number of neurons that 
are linked to others for processing information 
(Mohaghegh, 2000). ANN is inspired by the 
human brain, an ANN system is improved through 
a training process, it is also able to memorize 
experiences and apply the memorized 
experiences to predict unseen data. An ANN 
system is usually constructed based on following 
the assumptions: 

- Information is processed at various 
elements which are called neural; 

- The signal is transmitted from a neural to 
its connected neural; 

- Each connection is multiplied by the 
transmitted signal; 

- The output of each neuron is computed by 
a non-linear function of the sum of its inputs. 

Since ANN is able to reproduce and model 
non-linear process, it has found the application in 
many disciplines such as information technology, 
biology, management, economy, and medicine… 
where the relationships of related factors are non-
linear. 

In this research, ANN is applied to predict 
production flow rate of 5 wells that use the 
continuous gas lift method in X oil field, Vietnam. 
An ANN system is developed by using the back-
propagation algorithm (Mohaghegh, 2000) and 
the tansig function to predict the production flow 
rate from the above data set. This ANN system is 
called a back-propagation neural network 
(BPNN). The used data set was divided into two 
folders (Table 1). The first folder includes 231 

samples that were collected at studied wells from 
2019 to 2020, all samples include data on the 
production flow rate (Q1), choke size (D64), 
wellhead pressure (Pwh), the ratio of gas to liquid 
(GLR), free water, sediment and emulsion 
(BS&W), injected gas lift rate (QGlift), injected gas 
lift pressure (Pannulus) (Rashida et al., 2019; Azim, 
2020; George, 2021; Barjouej et al., 2021). In this 
first folder, 70% of the samples are used for the 
training process, 15% of the samples are used for 
the testing process and the rest 15% are used for 
validation. The second folder includes 33 samples 
that were collected at well 04 and 05 in 2021. This 
second folder was used for verifying the ability of 
production flow rate prediction of ANN. 

In the training process, ANN learn by 
processing examples, each of which contains 
known input and output layers. The input layer 
includes D64 (1/64 inch), Pwh (kPag), GLR 
(SCF/STB), BS&W (%),QGlift (MMSCFd), PGlift 
(kPag) while output layer includes Ql (STB/day). 
The input data is processed to give output results 
which are then compared with the target results 
in output layers for identifying the difference after 
every cycle. This difference is called error value, 
the error value then propagates back to neurals in 
output and hidden layers. The network then 
adjusts its weighted associations using the error 
value. The propagation is processed in a number 
of times until the error value reaches to an 
allowance minimum value or the number of cycle 
is equal to a defined number. After a sufficient 
number, the neural network produces an output 
that is similar to the target output. This is known 
as supervised learning. In this research, the 
authors have constructed and evaluated the back 
propagation neural network which has the 
structure as shown in Figure 2 in which the input 
layer is comprised of 6 neural (D64, Pwh, GLR, 
BS&W, QGlift, PGlift) and the output layer has one 
neural (Ql). A cost function used in the hidden 
layer is tansig and this for output layer is pureline. 

The difference between various network 
models is the number of neural in hidden layer 
usually varies from 4 to 12. The number of neural 
in hidden layer needs to be carefully selected and 
it needs to ensure the predicted results of ANN 
have a good correlation with output samples.
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Table 1. Data of 5 studied wells. 

Production Properties First folder of data 
(2019-2020) 

Second folder of data  
(2021) 

Number of samples 231 33 

Ql, STB/day 

Minimum value 42.62 198.24 
Maximum value 1156.89 880.16 
Mean value 515.54 549.46 
Standard error 317.77 226.04 

D64, 64th of an inch  

Minimum value 52 137 
Maximum value 157 157 
Mean value 133.9 149.94 
Standard error 20.43 9.7 

Pwh, kPag 

Minimum value 2295.1 2757 
Maximum value 5887 3074 
Mean value 2968.13 2905.88 
Standard error 284.29 79.33 

 GLR, SCF/STB 

Minimum value 106.75 417.58 
Maximum value 2008.8 890.66 
Mean value 561.33 615.23 
Standard error 219.44 144.68 

BS&W, % 

Minimum value 75.5 82 
Maximum value 99 96 
Mean value 89.36 89.23 
Standard error 6.01 4.44 

QGlift, MMSCFd 

Minimum value 0.45 1.8 
Maximum value 5 4.0 
Mean value 2.71 3.27 
Standard error 0.68 0.94 

PGlift, kPag 

Minimum value 8247 9865 
Maximum value 12085 11283 
Mean value 10619.91 10630.9 
Standard error 836.45 486.83 

 

 

Figure 2. Structure of artifical neural network (ANN). 
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Figure 3. Results of correlation coefficient with different number of neural in the hidden layer. 

 
Figure 4. Results of root mean square error (RMSE) with different number of neural                           

in the hidden layer. 

Table 2. Summary the results of correlation coefficient and root mean square error (RMSE) from 
different ANN models. 

Number of neural in 
hidden layer 

Correlation coefficient R Root mean square error RMSE 
Train Validation Test Train Validation Test 

4 0.964 0.952 0.941 52.326 66.400 72.654 
5 0.968 0.958 0.950 48.230 58.327 70.896 
6 0.972 0.963 0.953 43.865 54.037 66.587 
7 0.987 0.978 0.970 32.733 46.195 54.453 
8 0.988 0.979 0.972 32.686 44.320 51.674 
9 0.988 0.980 0.971 32.233 43.643 50.980 

10 0.989 0.980 0.972 31.864 43.320 51.354 
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It also needs to avoid overfitting due to too 
many neural being used. 

The results from various models with a 
different number of neural in the hidden layer are 
shown in Figures 3 and 4. From the comparisons 
of correlation coefficient number (R2) and root 
mean square error (RMSE) (Table 2) between 
different models, the author has decided to use 
the model with 7 neurals in the hidden layer as the 
ANN model for predicting production flow of 
studied wells. 

4. Results and Discussions 

To evaluate the accuracy of the ANN model, 
the authors also used the multivariate regression 
method, as shown in equation (5) (Ghorbani et al, 
2019), to calculate the oil production flow rate 
from input data that was used for the ANN 
training process then compared the results 
generated by two methods: 
𝑄𝑄𝑙𝑙 = 𝑎𝑎1𝐷𝐷64 + 𝑎𝑎2𝑃𝑃𝑤𝑤ℎ + 𝑎𝑎3𝐺𝐺𝐺𝐺𝐺𝐺 +
𝑎𝑎4𝐵𝐵𝐵𝐵&𝑊𝑊 + 𝑎𝑎5𝑄𝑄𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑎𝑎6𝑃𝑃𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝑏𝑏                                 (5) 

Where: 𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, 𝑎𝑎4, 𝑎𝑎5, 𝑎𝑎6, and 𝑏𝑏 - empirical 
factors whose values are shown in Table 3. 

Predicted results from two different models 
were then compared with actual oil production 
flow rate to evaluate the accuracy of the model as 
shown in Figures 5 and 6. The results of the 

regression coefficient (R2) and root mean square 
error (RMSE) are shown in Table 4. 

From Table 4, it can be seen clearly that the 
results of the predicted production flow rate from 
ANN model are much more accurate than 
Multivariate Regression models with R2 value is 
0.9854 and RMSE is 33.41 bbl/d. 

Lastly, to evaluate the potential application of 
ANN model constructed in this research, the 
authors use the model to predict oil production 
flow rate of oil wells in 2021 by using the second 
folder of data including 33 samples that were 
collected at well 01 and 05 in 2021. The results in 
Figures 7 and 8 clearly show good correlations 
between predicted and actual data in both wells. 
The curves in the two figures show very similar 

Table 3. Coefficients of equations to determine Q 
(Multivariate regression method). 

Parameter Coefficients  
Intercept (b) 3972.836 
a1 -46.435 
a2 -1.411 
a3 2.206 
a4 0.265 
a5 47.308 
a6 -0.030 

Table 4. Model performance comparison. 

Model 
Root mean 

square 
error RMSE 

Regression 
Coefficient R2 

ANN 33.41 0.9854 
Multivariate 
Regression 68.76 0.9353 

 

 
Figure 5. Cross plot of oil flow rate for ANN 

model (Predicted Ql). 

 
Figure 6. Cross plot of oil flow rate for 

Multivariate Regression model (Predicted Ql). 
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trends even for the 2021 production period in 
which the data was not used as input data to train 
the ANN model. 

5. Conclusion and recommendations 

From the results of this research, the authors 
summarize conclusions and recommendations as 
follow: 

- The ANN model using 7 neurals in the 
hidden layer and back-propagation is considered 

as the best model to predict oil production flow 
rate in 05 studied continuous gas lift flow wells. 
The predicted results are much more accurate 
than the multivariate regression model. 

- The ANN model also shows a potential 
future application for the prediction of the oil 
production flow rate of other oil wells. 

- To improve the accuracy of ANN model, 
further data set from previous years as well as 
updated data is needed for further training. 

 
Figure 7. Comparing predicted production flow rate by the ANN model and actual data of well 01             

in 2 production period (2019-2020 and 2021). 

 
Figure 8. Comparing predicted production flow rate by the ANN model and actual data of well 05             

in 2 production period (2019-2020 and 2021). 
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