Petro-geochemical characteristics and origin of the quartz in the lower oceanic crust, example from IODP-Hole U1473A

  • Affiliations:

    1 Faculty of Geosciences and Geoengineering, Hanoi University of Mining và Geology, Vietnam 2 Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan

  • *Corresponding:
    This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Received: 12th-May-2020
  • Revised: 29th-July-2020
  • Accepted: 31st-Aug-2020
  • Online: 31st-Aug-2020
Pages: 67 - 74
Views: 2217
Downloads: 1049
Rating: 5.0, Total rating: 104
Yours rating

Abstract:

IODP-Hole U1473A was drilled on the summit of Atlantis bank, Southwest Indian Ridge recovered large amounts of gabbroic rocks including mainly olivine gabbro. Felsic rocks are minor, approximately 1,5% of the total volume, which are comprising significant amount of quartz in some samples. The Ti concentrations and the estimated temperatures of the quartz in veins are relatively high, ranging from 30÷130 ppm and 540÷7000C, coupled with the myrmekitic textures in some veins are unambigeous evidence for the late magmatic origin. In addition to the crystallization mechanism in free spaces, such as crack/ fracture systems during the penetration of SiO2 - saturated magmas; the quartz is also formed by re-precipitation process at the same location leaving behind after the previous olivine in the host gabro has been dissolved.

How to Cite
Nguyen, D.Khac and Morishita, T. 2020. Petro-geochemical characteristics and origin of the quartz in the lower oceanic crust, example from IODP-Hole U1473A (in Vietnamese). Journal of Mining and Earth Sciences. 61, 4 (Aug, 2020), 67-74. DOI:https://doi.org/10.46326/JMES.2020.61(4).07.
References

Breiter, K., Ďurišová, J., and Dosbaba, M. (2017). Quartz chemistry–A step to understanding magmatic-hydrothermal processes in ore-bearing granites: Cínovec/Zinnwald Sn-W-Li deposit, Central Europe. Ore Geology Reviews, Vol. 90, pp. 25-35.

Charlier, B., and Grove, T.L. (2012). Experiments on liquid immiscibility along tholeiitic liquid lines of descent. Contributions to Mineralogy and Petrology, Vol. 164, No. 1, pp. 27-44.

Dixon, S., and Rutherford, M.J. (1979). Plagiogranites as late-stage immiscible liquids in ophiolite and mid-ocean ridge suites: An experimental study. Earth and Planetary Science Letters, Vol. 45, No. 1, pp. 45-60.

Huang, R., and Audétat, A. (2012). The titanium-in-quartz (TitaniQ) thermobarometer: A critical examination and re-calibration. Geochimica et Cosmochimica Acta, Vol. 84, pp. 75-89. 

Jacamon, F., and Larsen, R.B. (2009). Trace element evolution of quartz in the charnockitic Kleivan granite, SW-Norway: The Ge/Ti ratio of quartz as an index of igneous differentiation. Lithos, Vol. 107, pp. 281-291.

Koepke, J., Berndt, J., Feig, S.T., and Holtz, F. (2007). The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contributions to Mineralogy and Petrology, Vol153, pp. 67-84.

Koepke, J., Feig, S.T., and Snow, J. (2005). Late stage magmatic evolution of oceanic gabbros as a result of hydrous partial melting: Evidence from the Ocean Drilling Program (ODP) Leg 153 drilling at the Mid-Atlantic Ridge. Geochemistry, Geophysics, Geosystems, Vol. 6, No. 2, 27 pp.

Koepke, J., Feig, S.T., Snow, J., and Freise, M. (2004). Petrogenesis of oceanic plagiogranites by partial melting of gabbros: An experimental study. Contributions to Mineralogy and Petrology, Vol. 146, pp. 414-432.

MacLeod, C.J., Dick, H.J.B., Blum, P., Abe, N., Blackman, D.K., Bowles, J.A., Cheadle, M.J., Cho, K., Ciazela, J., Deans, J. R., Edgcomb, V.P., Ferrando, C., France, L., Ghosh, B., Ildefonse, B.M., Kendrick, M.A., Koepke, J.H., Leong, J.A.M., Chuanzhou, L., Qiang, M., Morishita, T., Morris, A., Natland, J.H., Nozaka, T., Pluemper, O., Sanfilippo, A., Sylvan, J.B., Tivey, M.A., Tribuzio, R., Viegas, L.G.F. (2017). Site U1473. Proceedings of the International Ocean Discovery Program, 360, 136 pp.

Müller, A., Wiedenbeck, M., Kerkhof, A., Kronz, A., and Simon, K., (2003). Trace elements in quartz - A combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodoluminescene study. European Journal of Mineralogy, Vol. 15, No. 4, pp. 747-763.

Nguyen, D.K., Morishita, T., Soda, Y., Tamura, A., Ghosh, B., Harigane, Y., France, L., Liu, C., Natland, J. H., Sanfilippo, A., MacLeod, C.J., Blum, P., and Dick, H.J.B., (2018). Occurrence of Felsic Rocks in Oceanic Gabbros from IODP Hole U1473A: Implications for Evolved Melt Migration in the Lower Oceanic Crust. Minerals, Vol. 8, No. 12, 583.

Niu, Y., Gilmore, T., Mackie, S., Greig, A., and Bach, W. (2002). Mineral chemistry, whole-rock compositions, and petrogenesis of Leg 176 gabbros: data and discussion. In Proceedings of the Ocean Drilling Program, scientific results (Vol. 176, pp. 1-60). College Station, TX: Ocean Drilling Program.

Philpotts, A.R. (1979). Silicate Liquid Immiscibility in Tholeiitic Basalts. Journal of Petrology, Vol. 20, No. 1, pp.99-118.

Putnis, A. (2002). Mineral replacement reactions: From macroscopic observations to microscopic mechanisms. Mineralogical Magazine, Vol. 66, No. 5, pp. 689-708.

Putnis, A., Oelkers, E.H., and Schott, J. (2009). Mineral replacement reactions. Thermodynamics and kinetics of water-rock interaction, Vol. 70, pp. 87-124.

Putnis, A., and John, T. (2010). Replacement Processes in the Earth's Crust. Elements, Vol. 6, pp. 159-164.

Putnis, A., and Putnis, C.V. (2007). The mechanism of re-equilibration of solids in the presence of a fluid phase. Journal of Solid State Chemistry, Vol. 180, No. 5, pp. 1783-1786.

Gibson, S. (2003). Le Maitre, RW. (ed.) (2002). Igneous Rocks. A Classification and Glossary of Terms. Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, xvi+236 pp. Cambridge, New York, Melbourne: Cambridge University Press. ISBN 0 521 66215 X. Geological Magazine, Vol. 140, No. 3, pp. 367-367.